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Abstract

Rapid development processes and higher customer requirements lead to increasing inte-
gration of software solutions in the automotive industry’s products. Today, several elec-
tronic control units communicate by bus systems like CAN and provide computation of
complex algorithms. This increasingly requires a controlled timing behavior.
The following diploma thesis investigates how the timing analysis tool SymTA/S can be
used in the software development process of the ZF Friedrichshafen AG. Within the scope
of several scenarios, the benefits of using it, the difficulties in using it and the questions
that can not be answered by the timing analysis tool are examined.
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1 Introduction

Nowadays, one can not imagine modern vehicles without microcontrollers controlling the
engine, transmission, safety relevant systems like electronic brake or comfort features like
power window lifts. Several Electronic Control Units (ECUs) are networked by several
bus system like CAN (Controller Area Network) [14], FlexRay [25] or LIN (Local In-
terconnect Network) [30]. Especially for safety relevant systems a well known timing
behavior is necessary.
AUTOSAR [9] is the result of efforts that are made to develop an open and standardized
system architecture for the automotive industry. Due to the lack of modeling timing issues,
the TIMMO (Timing Model) project [57] was created in April 2007 in order to investigate
methods to handle timing information of embedded real-time systems.
The timing analysis tool SymTA/S by Symta Vision [43] is a scheduling analyzer cus-
tomized for automotive industry. It provides end-to-end analysis as well as an optimization
function and a sensitivity analysis. In order to evaluate SymTA/S for ZF Friedrichshafen
AG [64] (ZF in the following), three scenarios will be examined which investigate an
efficient way of integrating the timing analysis tool in the software development process
(V-Model [59], see figure 1.1) of ZF. The first scenario is the timing analysis of an existing

Figure 1.1: Software development: V-Model, from [38]

ECU. Second, the analysis of function expansion on an ECU and the distribution of func-
tions to several ECUs considering the communication between. The last scenario is about

1
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analyzing how the tool can help to give a timing budget early in the development process.
For each scenario, it has to be examined how to get the necessary input and put it into the
tool as efficient as possible, which improvements in optimization and efficiency the tool
provides, when it can be used in development and which problems can not be solved with
the tool.
The remainder of this thesis is organized as follows: Chapter 2 describes several meth-
ods to gain (worst-case) execution times from code used in software development of ZF.
Chapter 3 describes SymTA/S internals and investigates the named use scenarios. Chapter
4 describes another timing analysis tool, chronSim. Chapters 5 and 6 complete this work
with an outlook of further work respectively a recapitulating conclusion.

2
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2 Execution Time Analysis

2.1 Preface

A crucial input for timing analysis with a tool like SymTA/S is the worst-case execution
time (WCET) of the software that is investigated. The WCET is the longest execution
time of code that runs on particular hardware given a particular input. Thus, the input
has to be considered as well as the hardware behavior. This chapter should be considered
as general overview of several analysis methods and their problems, independent from a
specific timing tool fed with this values. [53] gives an extensive summary.
For safety relevant systems, very precise results are necessary in order to guarantee the
timing behavior of such a system. So, a given WCET has to be safe, i.e. above or equal
to the real WCET, and tight, i.e. close to the real WCET. Figure 2.1 illustrates the WCET
problem. It is desirable to determine the WCET of code efficiently early in development.

Figure 2.1: The WCET problem, from [53, p. 3]

This would help to detect timing problems as early as possible. There are two WCET
analysis approaches: the measurement-based approach called dynamic analysis and the
static analysis.

3
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2.2 Dynamic WCET Analysis

2.2.1 Methods
The measurement-based determination of the WCET is widespread in industrial settings
[22, p. 2]. The execution time of the binary code on the target is measured for several
inputs. In general, each input leads to the execution of one certain path through the code.
The execution time of this path is measured.
There are several measurement methods which can be divided into hardware-based and
software-based ones [22, p. 2]. Hardware-based methods use amongst others an oscil-
loscope, logic analyzer or in-circuit emulator, see figure 2.2. [22, p. 5] describes that the

Figure 2.2: Tools for dynamic execution time-analysis, from [22, p. 3]

oscilloscope has a labor-intensive setup and the source code has to be instrumented in or-
der to take a certain path through the code. The logical analyzer listens to the address-bus
and records a trace of the accessed addresses along with time stamps. Another possibility
is to use an in-circuit emulator. It also records traces and provides non-intrusive execution
time measuring depending on its features.
Software-based methods comprise amongst others timing measurement functions pro-
vided by the operating system, a cycle-accurate simulator or the instrumentation of the
source code with timing measurement code that runs on the target. A cycle-accurate sim-
ulator has the advantage that it could be installed on the software developer’s host system
and therefor could be used for measurement early in the implementation phase without the
need to perform the test on the target hardware.

2.2.2 Problems
In order to measure the WCET, the input for the path that leads to the longest execution
time has to be known. If the code is very complex, i.e. it is a black-box, this WCET input
often is unknown. Measuring the code with all possible inputs usually is infeasible due to
the huge state space when there are many input parameters with a wide range. Therefor,
often only a subset of all possible inputs is measured. So, one risks not measuring the
worst-case input. The complexity might be reduced by using a divide-and-conquer strat-
egy similar to unit-testing [21], e.g. measuring each single function separated from the

4
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whole system and hence testing a straightforward amount of test inputs. This requires sys-
tem knowledge and black-box testing seems not to be suitable, see section 2.6. The global
WCET has to be calculated sophistically on the basis of the measured local WCETs.
The execution times of the processes are case-sensitive, e.g. the worst-case input might
exclude the simultaneous occurrence of the WCET of several functions or no function of
the software has its WCET in this situation. However, this worst-case input respectively
this worst-case situation is unknown in general, e.g. if the software is a black-box. There-
for, using the divide-and-conquer approach and calculating the global WCET by simply
adding local ones assumably leads to a safe but pessimistic global WCET.
Additionally, there are interdependencies of the code on hardware level. Interdepen-
dencies can be caused by features of modern CPUs like multi-level caches with a certain
replacement policy, translation look-aside buffer (TLB) entries for memory protection or
even virtual memory, pipelines, superscalarity with out-of-order execution, (speculative)
branch prediction and maybe even multiple cores. So, the worst initial state of the hard-
ware for each measurement has to be known, otherwise possibly yielding a too optimistic
result. However, this worst initial state is case-sensitive, i.e. it depends on the code exe-
cuted before. Regarding and measuring the system as a whole implicitly takes these issues
into account but often brakes down on the complexity which causes more test cases than
feasible.
A further problem is that instrumenting the source code with measurement code affects
the timing behavior of the whole system, e.g. by changing the cache contents and extra
execution time. When storing the execution time of each process in a separate variable,
the number of measured processes is implicitly limited to the available memory. Un-
fortunately, memory is short in embedded systems. The more precise the measurement
software is, i.e. it filters interruptions, the more overhead it has the more it affects the
timing behavior of the system. Besides this, the operating system also might influence the
execution time because it also uses the hardware.
Code, e.g. a process or a task, that runs on a system might be interrupted by higher prior-
ity tasks or interrupts. This duration could be calculated by more complex measurement
code that is added to the source code. In embedded systems, this method is not a suitable
solution due to the hardware restrictions and disabling interrupts is not always possible.
Measuring processes in the running system without complex measurement code possibly
implicitly includes interruptions into the measured WCETs. So, interrupt service routines
(ISRs) have to be triggered during measurement representing a realistic use case of the
system. Another possibility is to perform multiple measurements with smaller process
subsets while using complex measurement code. A further one is to separately analyze
each function and the ISR code and to calculate the global WCET by local WCETs, ac-
cording to the divide-and-conquer strategy. Then, typical interrupt occurrence scenarios
have to be assumed and taken into account during scheduling analysis, e.g. by SymTA/S.
Preemptions and interruptions also cause further overhead, e.g. by changing the branch
prediction and pipeline behavior, which has to be considered as well in order to gain ac-
curate values. Measuring the whole system implicitly includes this overhead but often is

5
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a unsafe WCET analysis method.
Recapitulatory, it is important to note that measurement-based WECTs are just estima-
tions. If a huge state space makes it impossible to measure all possible inputs, it is hard
to determine if the worst-case input is measured. Adding a safety margin to the measured
execution times is an unsafe solution too because it is unknown how much the WCET is
underestimated. This could lead to resource wasting when the safety margin is too big and
to timing problems when the margin is too small, see section 2.6.3. If it is the intension to
give a guarantee that a system will meet its deadlines under all circumstances, e.g. neces-
sary in safety critical systems, a measurement-based WCET is not suitable as input for a
scheduling analysis tool.

2.3 Static WCET Analysis

2.3.1 Methods

In contrast to dynamic WCET analysis, static WCET analysis does not execute the code
under investigation. Instead, the binary and maybe the source code are analyzed statically
using mathematical models of the software and hardware [8, p. 2]. The calculated WCET
qualifies to be safe if the analysis is correct. An upper bound, not just an estimation, is
calculated which should be equal or above the real WCET.
Most static WCET analysis methods are divided into three parts: control-flow analysis,
low-level analysis and the WCET calculation. Figure 2.3 illustrates core components of
static WCET analysis [8, p. 2]. The control-flow analysis determines the feasible ex-

Figure 2.3: Core components of a WCET analysis tool. The flow of information is shown
by arrows filled in grey. The arrows filled white represent tool-construction
input. (from [53, p. 11])

ecution paths of the examined code. Called functions, loop bounds and dependencies
between executable paths are analyzed and infeasible paths are determined that do not

6
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have to be considered later. For example, the longest imaginable path through the code
would never be taken because of input data dependent conditions on this path. Inputs for
the control flow analysis are the call graph and the control-flow graph (CFG), i.e. a rep-
resentation of the code to be analyzed. These graphs generally are determined from the
source code or the assembly code by a so-called Frontend of the analysis tool and contain
all paths through the code. Additional inputs are input parameter ranges or number of
loop iterations and recursions. This information can be provided by user annotations or by
a preceding value analysis which is intended to determine effective addresses statically.
Effective addresses are necessary for later data cache analysis because data can only be
assumed to be in cache if it can be guaranteed. Such a value analysis is implemented in
some static WCET analysis tools, see section 2.5.
The low-level analysis or processor behavior analysis determines the execution time of
the code’s instructions on the specific hardware. It has to be taken into account that the
execution time of an instruction depends on the instructions executed before respectively
on the processor’s state. So, the paths that lead to this instruction and to a certain state
of the processor and its periphery have to be analyzed. If information is missing, a con-
servative assumption has to be taken. This low-level analysis has to be aware of modern
processor features like caches, pipelines, branch prediction, TLB, etc.
The bound-, respectively WCET-calculation determines an upper bound of the global
execution time, depending on the results of the path and low-level analysis. This bound
should be tight and so a sophisticated approach is needed in order to avoid a too pes-
simistic global WCET. There are several methods for this calculation, e.g. the path-based
and structure-based method as well as an implicit path enumeration technique (IPET).
Figure 2.4 illustrates these methods. The structure-based method performs a bottom-up
traversal of the syntax tree, combines several statements to a node and determines a new
execution time for it by using given rules. These nodes are collected to bigger nodes and
so on. The path-based method calculates the execution time for possible paths and returns
the longest execution time. However, if there are a lot of branches in the code, the number
of possible paths grows very fast (exponentially). IPET uses mathematical constraints to
calculate the WCET. In combination with the CFG and the WCETs for each CFG block,
the global WCET is calculated by constraint programming or integer linear programming
(ILP) with the constraint to maximize the execution time [53, p. 14 cpp.]. Theoretically,
this approach is capable to determine the best-case execution time (BCET) as well.

2.3.2 Problems
The control-flow analysis is a difficult issue because the determination of loop bounds,
dependencies between paths and which functions are called is computationally in-
tractable in general. Thus, an approximation might be used [1, p. 4]. So, long infea-
sible paths might be not detected and are taken into account when calculating the WCET
although they are infeasible. Further difficulties arise with dynamic calculated branch
target addresses [53, p. 4]. In order to gain a tight WCET, additional user annotations,
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Figure 2.4: Bound calculation methods, from [53, p. 15]

e.g. information about loop bounds, memory layouts, input parameter ranges or infeasible
paths, often are necessary. Otherwise, a pessimistic WCET could result [22, p. 2]. This
requires deep system knowledge and black-box testing seems to be unsuitable. Section
2.6 comprises results from case studies and own experiences about this issue. Compiler
optimizations are a further control-flow analysis related problem. They might change the
control flow of the code in comparison to the source code [1, p. 5]. That would make the
analysis of the binary necessary.
The correctness and tightness of a statically determined WCET depends on the underly-
ing hardware model. Main difficulties are the complex features of modern hardware (see
section 2.2.2) which might cause timing anomalies, e.g. a local worst initial state leads to
a shorter global execution time, like described in [53, p. 6]. Accordingly, assuming only
local worst-cases could be unsafe too. An underlying processor model has to take this
into account. That might be difficult if the manufacturer keeps back detailed information
about the internals of its processor. Due to the variety of microcontrollers, possibly only
those with a high demand on market possibly would be supported quickly by static WCET
tool vendors. More information about supported hardware and additional requirements of
several analysis tools, like a certain compiler, are described in section 2.5.
The calculated WCET of a piece of code is the execution time without interrupts or pre-
emptions by higher priority tasks. They have to be taken into account because they
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cause additional overhead like context switches and changing the cache contents and the
pipeline behaviour, like described in section 2.2.2.
Most available static WCET analysis tools (see section 2.5) are not aware of object ori-
ented programming languages like C++, Java or Smalltalk. Furthermore, they require
certain programming restrictions like ANSI-C. Problems caused by the object oriented
approach are dynamic memory allocation and deallocation as well as dynamic binding
[63, p. 3]. When allocating memory dynamically, it is not clear how much time this al-
location takes. The allocation could be disabled or an upper bound could be defined on
the basis of predefined allocation models. This holds for dynamic memory deallocation
as well. Further, a background garbage collector as implemented in Java could lead to un-
predictable delays and therefore to very pessimistic execution time predictions. Dynamic
binding moves the decision which function is executed to run-time. This possibly depends
on input values and could lead to a pessimistic result when always assuming the case with
the longest execution time.
Recapitulatory, the main challenge of static WCET analysis seems to be the support of
modern processor features in order to overestimate the WCET not too much. In princi-
ple, pessimistic WCETs could be used in safety relevant systems. However, this probably
causes high costs when, for safety reasons, faster hardware is used than necessary.

2.4 Hybrid WCET Analysis

Hybrid WCET analysis approaches combine dynamic WCET analysis with features of the
static one. In general, the code (source and/or binary) is analyzed statically to extract sev-
eral blocks to be measured dynamically. The global WCET is determined by calculating
the measured execution times using the methods of static WCET analysis. Additionally,
input data could be generated by the analysis tool as well, e.g. by evolutionary algorithms.
The hybrid approach avoids the need for a complex hardware model. However, it also
suffers from unsafe measured WCETs.

2.5 Survey of Tools: State of the Art

2.5.1 aiT

The commercial aiT tool by AbsInt Angewandte Informatik GmbH [5] provides static
WCET analysis for several microcontrollers. The WCET is determined in several phases
which are described in [6] and illustrated by figure 2.5. Inputs for the tool are the ex-
ecutable, user annotations, information about the hardware like memory access timings
and buses as well as the start address of the code of interest. The executable can be given
in ELF (Executable and Linking Format), COFF (Common Object File Format), a.out and
several other formats. As output, aiT provides the WCET and visualizes the program flow,
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Figure 2.5: aiT’s phases of WCET analysis, from [6, p. 2]

call graph, pipeline analysis, see [6, p. 8]. The aiT is used through a graphical user inter-
face (GUI).
The CFG is build by a bottom-up approach [53, p. 20] from the executable. Together
with the user annotations it is transformed into a CRL-file (Control-Flow Representation
Language), an intermediate format which is input for later analysis phases. After this
control-flow analysis phase, the value analysis tries to find the values of registers and vari-
ables at a certain program point. If no concrete value can be determined, a safe interval
is determined or user annotations are used. So, possible memory accesses and number of
loop iterations might be found. The loop bound analysis uses the results of value analysis
and a pattern matching method to detect typical loop types. The cache analysis also re-
quires the results of the value analysis in order to classify memory accesses in guaranteed
cache hits and potential misses. aiT is able to handle LRU (Last Recently Used), pseudo-
LRU and pseudo-Round-Robin replacement strategies [6, p. 4]. It also takes into account
that the cache is saturated by the first loop iterations and later ones might have different
execution times. These results are input for the pipeline analysis. It determines possible
pipeline states for a basic block of the CFG. These possible pipeline states are input for
the subsequent basic block whose possible pipeline states are determined instruction by
instruction. They are input for the analysis of the subsequent basic block and so on. Output
of this analysis is the number of cycles that each basic block needs for execution. Hence,
the low-level analysis is finished. The WCET calculation relies on the ILP technique [6,
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p. 5].
User annotations are necessary if the value analysis fails or in order to refine the results.
These annotations can be about calculated branch targets, loop and recursion bounds, in-
feasible paths, processor clock frequency, the used compiler or the number of separately
analyzed loop iterations. Some of this information can be given at source code level by
special comments but no further source code modifications are necessary.
As aiT expects an executable as input, it has to be considered how to compile single
functions in order to analyze them separately. Otherwise, analysis can be performed first
after integrating the whole software which is late in development process. However, com-
piler optimizations and interdependencies between code snippets might not be considered
when analyzing them separately. The used compiler and the programming language (usu-
ally ANSI-C) have to be specified. In some cases C++ and Ada are also possible. aiT does
not support dynamic programming features and requires the use of the EABI (Embedded
Application Binary Interface). Supported targets are Motorola PowerPC MPC 555, 565,
and 755, Motorola ColdFire MCF 5307, ARM7 TDMI, HCS12/STAR12, TMS320C33,
C166/ST10, Renesas M32C/85 (prototype), and Infineon TriCore 1.3 (from [53, p. 21])
in combination with a specific compiler. A trial version of aiT is available under [4]. Sup-
ported operating systems are Windows and Linux. Amongst others, the product family of
AbsInt also includes a stack analysis tool (StackAnalyzer), a code compaction tool (aiPop)
and a cache analysis tool (aiCache).

2.5.2 Bound-T
Bound-T is a commercial WCET analysis tool developed by Tidorum Ltd. Inputs are an
executable with debug information (embedded symbol table), the start address of the code
of interest and optional user annotations provided by a text file. Supported file formats of
the executable are ELF, COFF or AOMF (Absolute Object Module Format) which often
dependents on the target processor, see [7] and [10, p. 79]. The outputs are text files con-
taining the WCET and the stack usage as well as files which contain the CFG and the call
graph. Figure 2.6 illustrates this. The Bound-T user interface is console based.
Bound-T has an loop analysis in order to determine some loop bounds automatically.
[53, p. 22] describes the complex algorithm in detail which is also used to resolve dy-
namic jumps. Instead of an abstract hardware model, Bound-T uses manually developed
processor models based on the processor manuals for the low-level analysis. The WCET
calculation bases on IPET using the tool lp_solve [31].
Like aiT, Bound-T needs user annotations in some cases. They are needed when using dy-
namic calls or dynamic jumps as well as no loop count can be determined automatically.
Bound-T is said to be independent of the programming language. Just compilers with
non-standard calling conventions are handled sensitive. Source code annotations are not
necessary. Bound-T does not handle code containing recursions. The CFG has to be re-
ducible. [11, p. 14 cpp.] and [53, p. 23] give an overview of the tool’s restrictions. It is
not mentioned here if Bound-T supports object oriented code. In contrast to aiT, Bound-T
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Figure 2.6: Bound-T’s inputs and outputs, from [55]

does not perform a cache analysis. Supported processors are Intel-8051 series (MCS-51),
Analog Devices ADSP-21020, ATMEL ERC32 (SPARC V7), Renesas H8/3297, ARM7,
ATMEL AVR and ATmega (from [53, p. 23]). [24, p. 29 cpp.] describes the port-
ing of Bound-T to the Renesas H8/3297 processor used in Lego Mindstorms. Bound-T
supported target platforms are SPARC processor with Solaris operating system and Intel
compatible processors running Linux or Windows NT with CygWin. With respect to the
use in development process, for Bound-T holds the same as for aiT.

2.5.3 Chronos

Chronos is an open source WCET analysis tool developed by the National University of
Singapore [16] and is released under GPL (GNU General Public License). Inputs are the
C-code file and a description of the target system [17, p. 2 cpp.]. The source code is used
by the Frontend for a data-flow analysis in order to determine loop bounds and infeasible
paths. Then, a specific compiler is invoked by Chronos and creates the executable from the
source code. In the next step, the executable is disassembled in order to build the CFG.
After this control-flow analysis, the low-level analysis determines the execution times
for each CFG basic block. Chronos is able to analyze out-of-order pipelines, instruction
caches and dynamic branch prediction. All results form the WCET of each basic block.
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The WCET calculation phase uses information about loop bounds and infeasible paths
along with the results of the low-level analysis. So, the calculation of the WCET is formu-
lated as an ILP problem. Like Bound-T, it uses the tool lp_solve [31] or the commercial
ILP solver CPLEX [28].
User annotations are possible through a GUI or at source code level. They might be nec-
essary for loop bounds and infeasible paths. In order to determine the tightness of the
calculated WCET, Chronos provides the simulation of the executable in the SimpleScalar
simulator with the same configuration as given for static analysis. This so-called observed
WCET can be checked against the examined, i.e. calculated, WCET, see [17, p. 6 cpp.]. It
is not intended to use Chronos for industrial WCET analysis. It provides WCET analysis
for the SimpleScalar simulator target, see [52] and [40]. This simulator allows model-
ing several processor platforms in software [17, p. 4]. The Chronos source code itself,
the SimpleScalar simulator, lp_solve and a SimpleScalar-gcc can be downloaded from the
Chronons homepage [16]. Chronos does not analyze data cache behavior and the code
must not contain recursions [54, p. 9].

2.5.4 MTime
The real-time systems group of Vienna University of Technology [62] developed several
WCET analysis research projects. There are static WCET analysis prototypes which allow
analyzing C-code or Matlab/Simulink models and a measurement-based prototype which
generates test data by genetic algorithms. A third project called MTime uses a hybrid
approach. It is introduced in the following. More information about the other projects can
be found at [53, p. 25 cpp.].
MTime uses techniques of measurement-based and static WCET analysis. Figure 2.7 il-
lustrates its architecture. Input is the C-code. The control flow is analyzed and partitioned

Figure 2.7: Architecture of the TU-Vienna hybrid timing analysis tool, from [53, p. 27]

automatically into segments which are measured later. These segments contain a maxi-
mum number of paths which is adjustable. Additional path information which is used to
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detect infeasible paths is extracted too. In the next step, test data is generated automati-
cally that should cover all paths in each segment. This is a multiple level process. First, a
random search determines the majority of test data inputs. Second, a heuristic like genetic
algorithms is used to improve the path coverage. Last, model checking is used to generate
the remaining test data. It verifies that a remaining path is infeasible or it generates the test
data to take this path. The measurement of the segments is performed on the target hard-
ware. The measured WCETs of each segment along with the additional path information
are used for WCET calculation that uses the ILP technique. Measuring the execution time
of the segments on the target hardware avoids modeling complex hardware architectures.
But it suffers from the problem of dynamic WCET analysis like measurement overhead
and source code instrumentation (compare with section 2.2.2). So, MTime does not take
different hardware states into account. The calculated WCET can not be guaranteed to be
safe. As MTime bases its analysis on C-code, the tool can be ported easily to new proces-
sors by changing the instrumentation code. Currently supported targets are the HCS12
and Pentium processors. However, MTime did not support function calls in 2006, see [54,
p. 5].

2.5.5 Tessy
Tessy is a commercial unit-test tool developed by Hitex. It just finished evaluation phase
but is not used in general by ZF. Unit testing stands for extensive and isolated testing of a
single unit, for example a single function. Extensively means that the unit is tested with
custom made test inputs, for example with unexpected ones. Isolated means that the unit
is tested independent from the rest of the application. Therefore, function calls have to be
replaced by pseudo-function calls.
Tessy scans C-code and determines the interface of the test object, e.g. the function to
be tested. The interface contains the input and output variables of the test object as well
as the function calls and global variables. Then, several test cases have to be specified,
e.g. one input configuration and the expected output per test case. In case of Tessy, these
pseudo-function, so-called stub-functions, just return a test case specific value or source
code is provided for them [48]. The tool comes along with a CTE (Classification Tree
Editor) in order to define test cases systematically following the classification tree method
[58]. More information about systematic construction of test cases can by found at [46].
As unit-tests are on-line, i.e. the test object is executed, its isolation is achieved by the
so-called test application approach. A specific test driver is compiled together with the
source code of the test object. It contains the startup-code for the specific target, a main
function, the call to the test object and possibly code for the stub functions. Figure 2.8
illustrates this. The test application’s size primarily depends on the number of input and
output variables, not on the number of test cases. Tessy feeds the test application with test
case specific input data and picks up the output. The input data is not compiled in the test
application.
The test application can be compiled as standalone application. So, it is possible to per-
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Figure 2.8: Tessy’s test application consists of original code and generated code, from [50,
p. 8]

form the unit-test on the target. A debugger connected to Tessy acts as interface. Thus,
the test application might be run on a simulator, an evaluation board or on an ECU. It is
the intention to use Tessy for measuring the WCET of all important paths through cer-
tain code snippets, e.g. a function. Then, the global WCET could be determined from
those local WCETs (see section 2.6.4). Another test possibility provided by Tessy is the
so-called original binary test. The unmodified application as a whole is executed on the
target until the test object is reached. Then, the specific variables are set to the test case
values and the output is compared with the expected output. This has the advantage that
the normal compiler and linker settings can be used. However, the original binary test just
can be performed late in development process when an executable software level is build.
Furthermore, the use of stub-functions is not possible and the unit is not isolated any more.
The test results are provided in common office file formats. Tessy provides line and path
coverage analysis of the test cases which can be imported using several file formats. Tessy
is also able to work with state machines [49].

2.5.6 Further Tools
The foregoing sections give an overview of the state of the art commercial and research
WCET analysis tools. There are many more projects whose detailed description would
go beyond the scope of this work. OTAWA (Open Tool for Adaptive WCET Analyses)
[33] and Heptane [26] are open source WCET analysis tools under GPL. The Chalmers
University of Technology developed a WCET analysis research prototype [15]. SWEET
(Swedish Execution Time Tool) is a WCET analysis tool prototype which is developed by
Mälardalen University [42]. It performs WCET analysis on intermediate code. Therefor,
a special compiler is integrated. Further WCET analysis tools are Cinderella [18] and
the research project of the Florida State University [53, p. 23 cpp.]. RapiTime by Rapita
Systems is a commercial hybrid WCET analysis tool.
In contrast to Tessy which supports only C-code, there are other unit test tools which
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work on C++ or Java. Commercial examples are Testwell [51] (C, C++, Java), Rational
Test Real-Time [37] (Ada, C, C++, Java), VectorCAST [60] (Ada, C, C++) and C++test
by Parasoft [12] (C, C++). The software developed by ZF underlies several programming
restrictions, like described in section 2.6.1. So, it has to be investigated if a unit test tool
like Tessy can handle it. There also exists a number non-commercial unit test tools. [41]
summarizes and describes a lot of them. Not all of them allow running the unit-tests on
the target.

2.6 Examination of Methods

2.6.1 Software Description
The following sections give detailed information about methods to gain (worst-case) exe-
cution times. This includes the common time measurement technique used by ZF as well
as new approaches. As possible, all approaches are evaluated with respect to precision,
amount of work and usability in the software development process of ZF. The examination
is made exemplary on a piece of automatic transmission software. The extracted example
function has a monitoring functionality. It is written in C and is part of a process within a
cyclic task with a period of 30 ms. It has two main paths and calls up to five sub-functions.
The first path is for error handling and calls sub-function five. In the second path, sub-
functions one and two are called to read out a characteristic line respectively map. The
result is checked and sub-function five might be called for error handling. At the end of
the example function, sub-functions three and four are called in every case. Including all
sub-functions, the code counts round 250 lines of code (excluding sub-functions four and
five). The example function is simply structured. In general, the code developed by ZF
underlies programming restrictions. Thus, recursion, dynamically calculated branch tar-
gets and function calls or dynamic memory (de)allocation are currently not used, even if
C++ is used. Other functions might contain more branches and more paths than the chosen
one. Due to these restrictions, code developed by ZF should be analyzable by common
static WCET analysis tools. The corresponding ECU has an Infineon TriCore 1766 32-bit
microcontroller for embedded systems with a frequency of 80 MHz running the OSEK
OS conform operating system (see section 3.2.1).

2.6.2 Common Measurement Techniques
Setup Description

The common measurement methods used by ZF allow measuring the execution times of
the tasks and/or processes using a specific variant of a final software level, i.e. they are
late in development. Section 3.2.2 gives detailed information about the used operating
system standard, its configuration and the distinction between tasks and processes. The
detailed measurement procedure and precision depend on the actual project. In general,
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the software is running on the ECU which is connected to the so-called Laborauto, a com-
puter that simulates the mechanic of the car, in particular the transmission. The (driver)
input for the ECU software is provided by the tool SoftCar RT. This tool is developed by
ZF. It stimulates the ECU and allows running test scripts which simulate specific driving
situations. As smallest software unit, processes can be measured. In order to measure
the execution time of the mentioned function, it is moved to an empty process and a new
software level is build. One has to keep in mind that this could lead to different execution
times as in the original binary due to compiler optimization.

INCA

The execution times of the tasks and processes that are running on the ECU are recorded
by the tool INCA [20]. INCA reads out the variables of the execution time measurement
functionality of the operating system. Depending on the project, the current and maxi-
mum execution time of tasks, single processes, ISRs and the processor utilization can be
displayed. INCA can record a trace of these values, e.g. when executing a certain SoftCar
RT-script. So, this is black-box testing. The results can be processed using common office
tools. There is no name-based correlation between INCA measurement variables and the
processes to be measured. This selection has to be done manually.
In the example project, interruptions by higher priority tasks are filtered but ISRs not.
These ISRs occur more or less non-deterministic. Assume that in a fictitious example, a
certain ISR occurs only once within an interval of 100 ms. During the first interval, the
ISR interrupts a certain process and lengthens its execution time. During the second inter-
val, the ISR interrupts another process and lengthens its execution time but not the process
which it interrupted before. It might be the case that this leads to the maximum measured
execution time of both processes. It can not be determined from the measurement trace if
this ISR is included twice. Further, it is easily imaginable that two subsequent INCA mea-
surements while running the same SoftCar RT-script provide (slightly) different results.
That makes it difficult to assume several ISR occurrence scenarios because the precise
number of already included ISRs is unknown. In this case it might be the only possibility
to work with ISR-affected execution times. INCA measurement also causes an overhead
that might affect the system behavior. Especially when measuring processes of task with
a short period, this leads to higher processor utilization.
For the investigated function, a highest execution time of 0.08105 ms is measured while
executing a SoftCar RT-script that performs several normal gear shifts and kickdowns. It
is intended to cause high processor utilization and interrupt load. It is important to note
that it is not guaranteed that this script causes the worst-case situation. Further, the results
most probably are affected by interrupts and non-deterministically occurring processes.
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Processing Hardware-Traces

Because measurement functions provided by the operating system might affect the system
behavior or probably do not take all interruptions into account, a more precise technique
using hardware-traces can be used. The software is executed as usual. The output of
a hardware debugger which is connected to the ECU via the OCDS2 (On-Chip Debug
System) interface is recorded with small (hardware) overhead. Such an output-file (size:
round six GiB) is processed by several scripts. These scripts extract the execution times of
all tasks, processes and ISRs while considering all possible interruptions. However, there
are differences between process and task execution times. In both cases, the interruptions
by ISRs and preemptions by higher priority tasks are filtered. Besides the processes which
are called deterministically during task execution, calls to functions respectively processes
that can not be assigned to a certain task are extracted too. They might be called by the
operating system or might stand in conjunction with ISRs. The determined task execution
times include them whereas the process execution times do not. So, suitable assumptions
would have to be made in order to reproduce the occurrence of these processes, like nec-
essary for ISRs. This causes an unacceptable amount of extra work and is late in software
development process. The developer of the scripts adapted them, so that not assigned
processes are implicitly included in the process execution times. This makes the results
less precise but a separate consideration is assumed to be not manageable.
In principle, the sum of the minimum and maximum process execution times should be
less or equal respectively greater or equal than the execution times of the corresponding
task after adapting the scripts. SymTA/S report files RPF00, p. 4 (bases on extracted task
execution times) and RPF01, p. 5 (bases on extracted process execution times) within
the enclosed archive summarize the task execution times that base on these different ex-
ecution times. These report files point out that the sum of the minimum and maximum
process execution times cover a smaller range than the task execution times in most cases.
According to the developer of the hardware-trace processing scripts, the lesser maximum
execution time is caused by an overhead that is considered only at task level. The reason
for the greater minimum execution time could not be clarified during this work. The ef-
fect of these different results that base on the same measurement on scheduling analysis
is described in section 3.4.2.
The processing of hardware-traces is restricted to the OCDS2 interface and also suffers
from the unsafety of probably not measuring the WCET. The measuring time of the avail-
able debugger is restricted to 850 ms. That makes it hard to measure a specific situation.
The analysis time of the scripts take round two hours on the test system. The test system
is a 1,4GHz Pentium M machine with 512 MiB of RAM running Windows XP Service
Pack 2. This should work better on a computer with a faster CPU. As result, the measured
execution time of the process is between 0.0017 ms and 0.0022 ms. This execution time
was measured during normal operation, i.e. not while processing a SoftCar RT-script.
It is extracted while using the adapted processing scripts that do not filter not assigned
processes.

18



www.manaraa.com

2.6 EXAMINATION OF METHODS

Summary

Recapitulatory, the common technique bases on the timing measurement functionality of
the operating system and INCA. It is unsafe and probably imprecise. It has to be taken into
account that the measurement probably affects the system behavior due to the overhead it
produces. This overhead and ISRs particularly affects the execution times of small code
pieces because hardware-sided interdependencies like a dirtied cache is assumed to have a
heavy effect on short execution times. If the execution time of single processes is needed,
this method can be time-consuming too. The hardware-trace method provides results that
are less affected but also suffer from the unsafeness of dynamic WCET analysis.
The common methods are suitable to get an overview of the average task execution times
without great effort. They are independent from the used programming language and
could even handle dynamic programming features. So, it might be the only way to get
execution times if other methods fail, e.g. for supplied software which is a black-box for
ZF. Analysis of the BCET can also be done without great extra effort. But the results are
as unsafe and imprecise as the WCET.

2.6.3 aiT

Preface

The static WCET analysis tool aiT (see section 2.5.1) was examined using a 30-days trial
version for Infineon TriCore 1796 and Tasking Compiler [47]. This version includes a
web- and telephone-based introduction and support. During evaluation phase, three aiT
versions were provided and tested. In particular, aiT for TriCore v2.0 build 63339, build
70825 and build 73031. Problems with the first two version caused consultations of the
support team and time-consuming tests. Some WCET analyses took several hours. In the
meantime, the test system was not usable. Finally the last aiT version was able to perform
a full analysis of the example function.
Refinements of the analysis could be reached through annotations about infeasible paths,
(not) executed code, upper loop bounds, stack address, the first CSA (Context Save Area)
of the processor and information about the periphery like external memory. For example,
the read out of the characteristic map could access a ROM with high access times. In
order to reduce analysis-time and resource usage, aiT allows using only local worst-cases.
When setting this option, aiT does not follow all successor states of pipeline and cache
analysis. Instead, it decides which successor state seems to be the worst and follows it.
The resulting execution time might not be the WCET, but it is gained more quickly. This is
a good choice when making first analyses in order to determine all necessary annotations.
All annotations in order to refine analysis require knowledge about software and hardware.
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Analyzing Manually Build Binaries

In order to get a WCET early in development process, an executable that includes the ex-
ample function has to be build manually from the source code. Using aiT this way might
help a software developer to keep a given timing budget by analyzing just written code,
see section 3.6. Local WCETs could form the WCET of a function, of a single process
and finally of a whole task, according to the divide-and-conquer strategy. Like described
in section 2.2.2, this could lead to a pessimistic global WCET. However, if the timing
analysis, e.g. by SymTA/S, does not indicate problems based on pessimistic WCETs, this
is safe result because the results that are determined by aiT are assumed to be safe.
The manually build binary consists of a main function that just calls the example func-
tion and the definition of external variables. Not needed code within the source files is
removed. The executable is created by compiling and linking the source files together
with a sample locator file which contains a sample memory mapping and with a sample
startup-code file. The used compiler is the Tasking TriCore VX v2.2r3p2. If the loca-
tor and startup-code files are not specified, the compiler uses default files. For precise
analysis, the corresponding files and settings from the current project should be used. Ex-
emplary, creating an executable is done by the following command:

~>cctc -g --format=ELF -C tc1766 -d locatorfile.lsl
startup.asm main.c function.c subfunction.c

The parameter -g causes the compiler to compile in symbolic debug information. This is a
useful option for first analyses. If there are problems, the corresponding source code can
be displayed by aiT. The parameter -C tc1766 specifies the target processor. Unfortunately,
the aiT version is for the TriCore 1796 whereas the target is a TriCore 1766. However, aiT
calculates the same WCETs for executables build with option -C tc1766 and -C tc1796. If
not all source code is available, like for the sub-functions four and five in the example, the
assumed execution times of them are annotated by:

snippet "sub_function4" is not analyzed and takes 39 cycles
and does not violate calling conventions;

snippet "sub_function5" is not analyzed and takes 1718 cycles
and does not violate calling conventions;

These annotated WCETs are determined by the analysis of a final software-level binary
which is described in the following sub-section. aiT does not simply add these annotated
processor cycles. Rather, it takes a certain overhead into account, i.e. pipeline and cache
effects, caused by the not-analyzed sub-functions. So, the analyzer flushes the pipeline and
fills it after the "call" to the annotated function. When using the annotation appendix "and
does not violate calling conventions", aiT assumes that not all value information collected
by aiT are destroyed by the not-analyzed code snippet. Instead, it is assumed that the saved
registers keep their values and that the user stack remains the same whereas the systems
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stack is decreased by 64 bytes. This annotation appendix is useful to shorten analysis-
time and memory usage. Sub-function five is used for error handling only and thus it is
not needed in general. So, the following annotation is made that avoids a contribution of
sub-function five to the global WCET for a second WCET analysis:

snippet "sub_function5" is never executed;

Upper loop bounds for the functions that read out the characteristic map and line are anno-
tated as well. The entry point of the analysis is the example function. No more annotations
are necessary to get a first WCET by aiT.
When using aiT build 63339 and 70825, the determined WCETs of the example function
using the manually build binary including debug information (size: 28 KiB) differs from
that using the manually build binary without debug information (size: 10 KiB). Removing
the compiler parameter -g results in higher WCETs. Version build 73031 does not suffer
from that problem and provides the same results for the manually build binaries containing
symbolic debug information or not. AbsInt Angewandte Informatik GmbH provided the
exchange of the binary in order to investigate the problems occurred with versions build
63339 and 70825. This was not possible because the agreement of the legal department
could not be obtained in that short evaluation time. So, the support team was contacted and
a lot of time-consuming tests were made in order to try out several annotations and set-
tings until aiT build 73031 was available, see section 2.6.3. So, aiT build 73031 is meant
in the following when not stated otherwise. It determines a WCET of 11275 cycles for
the example function to be investigated when including sub-function five into analysis and
2362 cycles when excluding it by the annotation described above. This high difference is
caused by aiT’s assumption that sub-function five might also be called by sub-functions
one and two. This is illustrated by the call graphs shown at the end of the analysis, see
figure 2.9 and figure 2.10. The red arrows within the graphs indicate the WCET path.

Figure 2.9: aiT’s (build 73031) call graph analyzing the manually build binary including
sub-function five
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Figure 2.10: aiT’s (build 73031) call graph analyzing the manually build binary excluding
sub-function five

The red area of the bar within each call graph block indicates the corresponding function’s
contribution to the global WCET. The orange area stands for the portion of the corre-
sponding function’s sub-functions. A fully orange block indicates that its execution time
is annotated. The call graph does not indicate how often a certain function is called. For
example, sub-function five might be called twice by the example function. This and more
analysis information can be gained by zooming in each block. The block’s assembly code,
the WCET path within the block and how many times a basic block is executed are listed.
That "visualization" of the WCET might help to refine the analysis by additional annota-
tions about infeasible code or to detect bottlenecks in the code.
The WCET including sub-function analysis is higher (2362 cycles) than that one with an-
notated sub-function WCETs (2340 cycles). The reason is that the overhead caused by the
calls to the annotated sub-functions obviously is assumed to be too low. This is confirmed
by removing the annotation appendix "and does not violate calling conventions". Then,
the WCET using annotated execution times is higher than that one including sub-function
analysis. This phenomenon also does not occur when using local worst-cases for analysis.
In the example, a WCET considering only local worst-cases is lower (2320 cycles) than
the normally calculated one (2362 cycles). Table 2.1 summarizes the aiT results but does
not list the results when removing the mentioned annotation appendix.

Analyzing Final Binaries

Analyzing the final software-level binary is late in development process and might be used
to determine the WCET of processes and tasks at once. It considers the final compiler set-
tings and code optimizations. Two binary versions of a final software level are used: a big
ELF-file containing the whole transmission software (size: 6.5 MiB) and a smaller one
containing one part including the example function (size: 2.8 MiB). Both are compiled
for TriCore 1766 and contain symbolic debug information.
When using aiT build 63339 or 70285, loading the big binary takes round eight minutes.
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function source
binary

using
local

worst-
cases

including
sub-

function
analysis

WCET [cycles] analysis time

example fct. mb no yes 11275 (2362) approx. 1 min
example fct. mb yes yes 11233 (2320) approx. 1 min
example fct. mb no no 11255 (2340) approx. 1 min
example fct. mb yes no 11255 (2340) approx. 1 min

sub-fct. 1 mb no yes 3199 (1386) approx. 1 min
sub-fct. 2 mb no yes 2269 (512) approx. 1 min
sub-fct. 3 mb no yes 61 (61) approx. 1 min
sub-fct. 4 sb no - annotated: 39 -
sub-fct. 5 sb no - annotated: 1718 -

example fct. sb no yes 8290 (2651) 40 min
example fct. sb yes yes 7798 (2449) approx. 1 min
example fct. sb no no 8136 (2590) approx. 1 min
example fct. sb yes no 8004 (2511) approx. 1 min

sub-fct. 1 sb no yes 1113 (1113) approx. 1 min
sub-fct. 2 sb no yes 505 (505) approx. 1 min
sub-fct. 3 sb no yes 141 (141) approx. 1 min
sub-fct. 4 bb no yes 39 (39) approx. 1 min
sub-fct. 5 sb no yes 1718 approx. 1 min

example fct. bb no yes 8084 (2605) 67 min
example fct. bb yes yes 7710 (2448) approx. 3 min
example fct. bb no no 7969 (2570) approx. 3 min
example fct. bb yes no 7833 (2495) approx. 3 min

sub-fct. 1 bb no yes 1095 (1095) approx. 3 min
sub-fct. 2 bb no yes 493 (493) approx. 3 min
sub-fct. 3 bb no yes 142 (142) approx. 2 min
sub-fct. 4 bb no yes 39 (39) approx. 2 min
sub-fct. 5 bb no yes 1662 approx. 3 min

Table 2.1: WCETs determined by aiT for TriCore v2.0 build 73031, values in brackets are
determined by using the annotation snippet "sub-function5" is never executed;
(mb = manually build, sb = small binary, bb = big binary)
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It holds for both final binaries that it is not possible to get a WCET of the example
function when including sub-function analysis without setting the local worst-cases op-
tion. Otherwise, memory runs short during analysis on the test system. The analysis
of the example function using the small final binary takes round 4.5 hours if annotating
sub-function WCETs but not using local worst-cases for calculation. The annotated sub-
function WCETs are determined by separate analyses. Even the analysis of sub-function
one takes up to 1 hour when using aiT build 70825. The first both versions also fail on the
analysis of sub-function five. The analysis re-iterates again and again during first analy-
sis phase until memory runs short. The reason might be that this sub-function calls a lot
of sub-functions that can be seen in the call graph of this function that is provided after
analysis with aiT build 73031. As result, the memory usage explodes and the analysis
terminates. The main reason for those problems is the bug that is fixed in aiT build 73031.
Debug labels are taken as routine labels and a routine call affects the pipeline and cache
behavior like described above. It is assumed that this leads to a state explosion and mem-
ory consumption increases to several gigabytes. In combination with the small amount of
RAM of the test system, very long analysis times respectively analysis terminations due
to memory shortness are the result.
Fortunately, the analysis of the example function using both final software-level binaries
works well with aiT build 73031. Only in few cases the analysis takes quite long. It is
supposed that it works better on a system with a plenty of RAM. The results are listed
in table 2.1. It is remarkable that the analysis time and resource usage obviously depend
on the size of the binary because the manually build binary does not suffers from that
problem. Even when using aiT build 73031, the calculated WCETs of the several bi-
naries differ. One reason might be different compiler settings that are used for the final
and manually build binaries. These settings might change the code layout and therefor
could lead to different WCETs. Analyzing sub-function four and five separately provides
a WCET of 39 cycles and 1718 cycles (small binary) respectively 1662 cycles (big bi-
nary). These WCETs are annotated for sub-functions four and five when analyzing the
manually build binary, like described in the antecedent sub-section. Again, the WCET
including the sub-function analyses is higher (2651 cycles) than the one using annotated
WCETs (2590 cycles). When removing the annotation appendix "and does not violate
calling conventions", aiT determines a WCET of 2805 cycles (small binary) when an-
notating sub-function WCETs whereas the WCET including sub-function analyses keeps
2651 cycles. Using local worst-cases provides the expected behavior without annotation
adaption, see table 2.1. A more important observation is that the WCETs of the sub-
functions do not change when excluding sub-function five from analysis. In contrast to
the analysis of manually build binaries, aiT does not assume that sub-function five is called
by sub-function one and two when analyzing the final binaries. This is indicated by the
blue arrows within the resulting call graph, see figure 2.11. It is supposed that the value
analysis works better on the final binaries because more information about register and
memory contents is available. In the concrete example, the call to sub-function five by
sub-functions one and two would be caused by incorrect information about the size of the
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Figure 2.11: aiT’s (build 73031) call graph after analyzing the small final binary using
local worst-cases (the routines are renamed)

characteristic map respectively line. However, this information is assumed to be included
in the final software-level binaries and is detected by the value analysis. So, the path
analysis, which is performed by lp_solve, determines that a call to sub-function five and
the WCET path are mutually exclusive with respect to the results of the value analysis.
So, the WCET path does not contain sub-function five to be called by sub-functions one
and two. Nevertheless, a review of the call graph and further annotations are necessary
to check the correctness of the results. However, this and the user annotations require
knowledge about the software’s internals.

Summary

The experiences made with aiT in scope of this work are comparable to the results of
several case studies, see [8], [22] and [23]. These case studies describe the use of aiT
and other tools in order to determine the WCET of embedded automotive software. The
bigger and more complex the code snippets are, the more aiT annotations are necessary
the more resources aiT needs. So, a lot of work has to be invested into the first analysis.
Some annotations can be used again later. [22] describes five industrial case studies on
timing analysis. In its fifth study, the results of static analysis with aiT for the Infineon
C167CS processor, dynamic analysis with an in-circuit emulator and the common mea-
surement technique are compared. The common technique uses operating system (Rubus)
timing measurement functions and adds a safety margin in order to estimate the WCET.
The over-estimation of aiT is between 4% and 33% in comparison to the emulator results.
In all cases except one, the aiT results are much lower than the commonly measured val-
ues plus the safety margin, at least 38% and 59% in average [22, p. 7]. The WCET Tool
Challenge 2006 [54] also evaluates several WCET tools and gives aiT good results.
For further work, it should be investigated, how aiT is capable to handle C++ code de-
veloped by ZF. It should handle this because of the programming restrictions described in
section 2.6.1. A tool like aiT allows analyzing single functions, isolated from the rest of

25



www.manaraa.com

2 EXECUTION TIME ANALYSIS

the system. The tests show that an analysis of the binary of a final software level provides
the most precise results because all compiler optimizations are included there. No extra
hardware is necessary but the target microcontroller has to be supported. According to an
AbsInt employee, a best-case execution time (BCET) analysis is kept in mind for further
versions of aiT.
Due to the time limit of this work, the examination of aiT stops here. There will not be a
deeper examination of the aiT internals and the reasons for the differences of the results.
The referenced papers show that this could easily fill a whole diploma thesis. One has
to keep in mind that aiT requires a lot of resources in the tested version and only certain
microcontrollers are supported. However, it is assumed that aiT provides safe WCETs.

2.6.4 Tessy

Preface

Like described in section 2.5.5, Tessy is a unit-test tool for C-code with the possibility
to perform unit-tests on the target. Tessy is used in version 2.5.9. The intention is to
use this tool for WCET measurements of units, e.g. single functions. It is intended to
measure all important paths through the code. Important means, all possible paths should
be measured that are taken through normal operation. In particular, paths containing error
handling possibly can be skipped. That is comparable to the exclusion of sub-function five
by aiT. Test cases have to be specified to provide an input so that a certain path is taken on
execution. The output is uninteresting unless it is intended to check the functionality of
the function as well. This procedure gives the tester full control over the tests and possibly
avoids rerunning time-consuming static WCET analyses due to analysis refinements.

Specifying Test Cases

The same code as for the examinations of aiT and the common techniques is used, see
section 2.6.1. In order to reduce the complexity of specifying the test cases, each sub-
function is analyzed separately. For sub-functions four and five, the source code is not
available. The call to sub-function four is removed from the source code because it is
assumed to take only 39 cycles, according to aiT (see table 2.1). The call to sub-function
five is removed as well because it is for error handling only. Thus, it does not contribute to
the global WCET. The resulting WCET are assumed to be comparable to that determined
by aiT when excluding sub-function five from analysis.
Working with Tessy is as follows. The C-files are loaded and Tessy determines the con-
tained functions. Then the interface of the function of interest (the test object) is edited.
There, the required input and output variables to take the paths are determined. External
variables and stub-functions also are defined by Tessy. Then, the test cases are defined.
Each test case provides the input to take a certain path through the code. In particular, the
intended example function has eight test cases. Error handling is assumed to do not occur
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during normal operation, so the short (error handling) path within the example function
is not considered. The remaining tests cover the cases that could occur due to the three
IF-statements within the example function. Sub-functions one, two and three are removed
from it.
For sub-function one, twelve tests are specified. The first nine ones are needed to cover
all cases that could occur when reading out the characteristic map. Each of its two di-
mensions causes three cases. A given parameter has to be searched within the map. It
therefor can be below or above the lowest respectively highest value of the map or forces
the read-out function to iterate until the right value is found. The last three of the twelve
tests are the consequence of handling some special cases.
Sub-function two has three test cases. The first two cases occur when calling that function
with a parameter that is below respectively above the lowest (highest) value of the charac-
teristic line. Again, the third test forces this read-out function to iterate until the right one
is found.
For sub-function three, four tests are specified because it contains only two IF-statements.
The CTE helps to specify the test cases, especially when the number of paths respectively
test cases grows. For each test case, the corresponding values can be specified within the
CTE. So, the CTE makes systematic testing easier. Unfortunately it is not possible to
import the created test cases with CTE v2.4 into Tessy v2.5 because of version conflicts.

Execution Time Measurement

The automatic execution time measurement is only available for targets connected to a
Lauterbach TRACE32 Debugger and for C166 microcontrollers.So, the combination of
TRACE32 as target and Tasking TriCore VX as compiler is selected within the TEE (Tessy
Environment Editor). The same compiler and additional files are given to Tessy as used
in section 2.6.3. Tessy generates source code and builds an executable. Then, it tries to
execute it on the target. Therefor, the executable is loaded to the target through a debugger
script that is created by Tessy. Additional commands within this script, i.e. for specific
target requirements, can be given through the module properties or the TEE.
First tests are made with the TRACE32 simulator in order to check that the communica-
tion between Tessy and TRACE32 works. Although the communication works fine, the
simulator is not suitable for execution time measurement because it is only an instruction-
accurate simulator. The runtime functionality of TRACE32 bases on the elapsed processor
cycles. The simulator simply counts one cycle per executed assembler instruction and does
not take caches etc. into account. The so determined "WCETs" are 17 instructions for the
example function (without sub-functions), 24 for sub-function one, 14 for sub-function
two and ten for sub-function three. Those are 65 in sum. These 65 assembler instructions
do not reflect the real WCET because the overhead due to sub-function calls are not con-
sidered as well as a load instruction might need more or less processor cycles depending
on if the data is in cache or not.
When trying to perform the tests on the ECU, it turned out that the TriCore 1766 supports

27



www.manaraa.com

2 EXECUTION TIME ANALYSIS

only two hardware breakpoints while Tessy needs three ones for automatic timing mea-
surement. Thus, the timing measurement has to be included manually. It is intended to
read out the timer register STM0 of the processor before and after the call to the test object.
This approach is very similar to the use of the timestamp counter of x86-based processors.
However, the TriCore timer needs a complex initialization procedure. So, it is intended to
get the execution of standard unit-tests on the target working properly before generating
timing measurement code. Therefor, it is important to adhere strictly to the Tessy manual
in order to get Tessy working with TRACE32 because the Tasking TriCore VX compiler
has a lot of complex settings. In particular, the handling of the locator files requires a lot
of expert knowledge.
A prototypical procedure to run the unit-test on the target is as follows. The host system
running Tessy is connected to the TRACE32 debugger that is connected to the target ECU
which is set up by a supplied debugger script. As Tessy builds a standalone application,
the operating system and the application provided by ZF have to be deleted before. Other-
wise, the operating system’s control functionalities to supervise the application software
cause resets when trying to run the unit-test. After loading the executable into the tar-
get using the standard script generated by Tessy, the execution goes only until the main
function of the executable. Then, the communication between Tessy and the target fails
because Tessy is not allowed to set hardware breakpoints. Even using compiler and linker
options from the original software build process and declaring the whole memory of the
target as flash in order to be able to set hardware breakpoints in RAM does not work.
Due to the small amount of RAM (56 KB) and in order to provide realistic conditions,
it is intended to flash the executable into the target’s flash memory. The necessary flash
commands can be given to the debugger script that is generated by Tessy in order to load
the executable into the target. The executable has to be flashed to a certain memory region
because the execution starts here after initialising the hardware with supplied code. This
requires a memory mapping that locates the executables at this position. Unfortunately,
the locator file that describes the memory mapping is supplied to ZF and could not be
adapted adequately.
Further investigations of the locator file, the startup-code and eventually of the initialisa-
tion code have to be made in order to get Tessy working properly with the target ECU.
Due to the limited time of this work, eventually very time-consuming attempts to get the
unit-test running are left for future work. Even consultation of the Tessy support team did
not lead to a working solution. It might be better to use an evaluation board instead of the
target ECU because the hardware initialisation and memory mapping assumably are more
transparent and could adapted more easily. Then it has to be considered that the conditions
like processor frequency and memory access timings are equal to those of the target ECU.

Summary

The advantages of this approach are that the tests are assumed to run quickly, no complex
hardware model is needed and the tester will have full control over the test cases. The-
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oretically, it is possible to determine a kind of BCET (which is not guaranteed to be the
BCET). If it were possible to measure all paths through the code, a probability distribution
of the execution times could be given.
Disadvantages are that it can not be guaranteed that the WCET is measured until not all
possible inputs are measured. However, the coverage analysis provided by Tessy might
help to cover all important paths. If there are a lot of paths through the code, the total time
of the test will also grow. The approach using Tessy requires a complex preparation at all
and it is restricted to C-code. Real hardware and the TRACE32 debugger are needed. As
the functions are tested isolated from the rest of the system, hardware- and software-based
interdependencies are not taken into account. Further, it is very hard to determine and to
induce the worst initial hardware-state. In order to avoid too optimistic results due to cache
and pipeline effects when executing the test-cases sequentially, code should be included
which sets up a pessimistic initial hardware state before each run. The work with Tessy
shows that typecasts can make source code changes for WCET determination necessary.
In particular, if a pointer to a data structure is casted to a void pointer and given as input
parameter, Tessy can not initialize the data structure.

2.6.5 Alternative Proposals
All previous described methods base on compiled code. If no code is available or execu-
tion times are required before the code is ready to compile, other methods are necessary.
One possibility is the ITA (instruction timing addition) method. The CFG is build man-
ually from the source code and the WCET of each basic block is calculated from the cycles
of its instructions, like described by [19, p. 39 cpp.]. A basic block begins at the first in-
struction, a branch target or the very first instruction after a branch instruction. It ends at
the beginning of the next basic block. Figure 2.12 illustrates this. The WCET of each ba-
sic block can be determined by the accumulation of the cycles each instruction in the basic
block needs. This is a very hardware dependent approach but does not take delays caused
by memory accesses or effects of caches and pipelines into account. Interdependencies
between different tasks or the operating system are not considered. Methods to calculate
the WCET of the program from the WCET of the basic blocks are described in [53, p.
14 cpp.] and in section 2.3.1. Here, a simple calculation method like the path-based one
might be used.
In order to gain results if no code is available, execution times could be derived from
similar projects. For example, the new hardware is faster than the old one and the new
software’s functionality is very similar to the old one. Very first execution time estima-
tions can be calculated by just multiplying the old execution times with the ratio of old
and new hardware speed. However, cross examinations of execution times, for example
from SoftCar experiments running on the development system, are assumed to be insuf-
ficient respectively very imprecise because different hardware features of the processors
like cache size, memory access time, pipeline depth, superscalarity or special floating-
point performance could lead to different "conversion factors" depending on the code. The
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Figure 2.12: Example source code and related CFG for ITA, from [61, p. 2]

same holds for examinations based on analyses of other ECUs with another processor. So,
deriving execution times from similar projects only works under the condition of using the
same or very similar hardware. Another approach is to assume execution times of already
implemented software with a similar functionality on the same hardware. However, often
the software functionality and complexity change. Then, such an approach becomes not
suitable respectively is very imprecise in general.
In some cases, the above described methods using static WCET analysis or unit-testing
are not usable. If execution times are needed earlier than those determined by the common
technique, a manual unit-test approach could be performed. A software frame calling
the function to be tested and containing the measurement code is needed. Together with
a suitable locator file and startup-code, a standalone application can be build which runs
on the target, an evaluation board or on a cycle-accurate simulator. The required input
has to be hard coded into the source code or given by the calling function. This is a
time-consuming approach. Like all static WCET analysis and unit-test approaches, the
interdependencies between other software components, the hardware and the operating
system are not taken into account. The results are not guaranteed to be safe.
The use of a hybrid WCET analysis tool might be similar to the approach using Tessy. A
divide-and-conquer strategy reduces the measuring complexity. Advantages of such a tool
are the sophisticated calculation of the global WCET from these of the basic blocks and a
higher automation level. An investigation of this tool using a trial version could be topic
of further work. Hybrid approaches like MTime (see section 2.5.4) suffers from the same
problems of dynamic WCET analysis. The measured execution time is not guaranteed to
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be the WCET.
Approaches to make WCET analysis easier is to use simpler hardware, e.g. without
(multiple) caches. Another possibility is to restrict the programming style. Loops should
have constant iteration numbers. Recursion should be avoided when possible or have a
constant depth. In general, the execution time of the code should depend as few as possi-
ble on input parameters and should be as constant as possible. Such code might perform
each computation and there are only very few paths through the code. At the end, only
the necessary results are assigned to the appropriate (global) variables. This approach also
makes it less difficult to determine the BCET of certain code. It reduces effects of large
jitter which could effect end-to-end paths within the system, like described in section 3.5.
Programming features like dynamic binding or dynamic memory (de)allocation should
not be used but are not used by ZF anyway. They would cause delays that can not be
determined statically. The programming language has to be chosen in order to keep the
ability to use a certain WCET analysis method. Code with only a few possible paths is
easier to analyze respectively it is easier to specify test cases for it. If the code should not
be analyzed by the software developer, the code has to be well commented too in order to
reduce questions to him later.

2.6.6 Result Analysis

Table 2.2 summarizes the (worst-case) execution times gained using the described meth-
ods. One has to keep in mind that the tested aiT version is for the TriCore 1796 whereas
the target processor is a TriCore 1766. The WCET of 0.03314 ms results from the clock
frequency of 80 MHz and the 2651 cycles determined by aiT without considering the error
handling sub-function five (see table 2.1).

method/tool WCET [ms] WCET analysis approach
analyzing hardware-traces 0.0022 dynamic

INCA measurements 0.08105 dynamic
aiT 0.03314 static

Tessy 65 assembler instructions dynamic

Table 2.2: Summary of the obtained WCETs using different methods respectively tools

Both processors (1766 vs. 1796) have differences like the clock frequency (80 MHz vs.
150 MHz), internal flash (1.5 MB vs. 2.0 MB) or SRAM size (72 bytes vs. 192 bytes).
However, both have a similar hardware architecture and a superscalar pipeline which al-
lows processing of round 1.3 instructions per cycle. So, the result provided by aiT is
assumed to be suitable to determine the WCET of the given code for the TriCore 1766.
Surprisingly, the WCET gained by the INCA measurement is the highest one. Even the
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one determined by aiT is lower. However, the lowest execution time measured by INCA
is about 0.014 ms and so it is below the aiT result. It is assumed that the high execution
time is caused by interrupts which are not filtered plus the measurement overhead. In
contrast, the execution time gained from the hardware-traces is much lower than the other
ones. The reasons might be that the hardware-trace is very short so that only a average
execution time was measured and it was recorded while normal operation and not while
running a 3-minute SoftCar RT-script. Further, the execution time of 0.0022 ms is the
pure execution time. Interrupts and the INCA measurement overhead are not taken into
account. Section 3.4 confirms these results but shows that the differences do not scale that
much like here. So, it is assumed that especially for small code pieces the measurement by
INCA might provide too pessimistic results. Unfortunately, for the Tessy approach no re-
sults are available. Just the number of assembler instructions could be gained by using the
TRACE32 simulator. It is about 65, see section 2.6.4. In general, the determined WCETs
highly depend on the measurement technique used. So, an evaluation of the results always
has to be made carefully.

2.7 Measuring And Processing Execution Times

The question if a separation of coding and WCET analysis makes sense is not easily an-
swered. The common technique implicitly separates both steps to different employees.
The software developers check the functionality of their written code within a software-
based environment. The software integration expert builds the final software-level and per-
forms several functionality tests. Writing SoftCar RT-scripts that are suitable for WCET
analysis requires knowledge about software internals. Because the software is a black-
box, it is practically impossible to write a SoftCar RT-script respectively to stimulate the
software another way in order to induce the worst-case situation where a certain task or
process has its WCET. So, the common technique is a kind of black-box test that separates
coding and measurement.
When using aiT, the software developer has the ability to analyze his code on his own
development system. However, annotations concerning the hardware that need hardware
expert knowledge have do be made. For precise results, the hardware expert has to work
together with the software developer until the tool is configured completely. It is not pos-
sible to perform real black-box tests both for software developer and hardware expert.
In case of Tessy, separation of test case specification and measurement is assumed to be
more practicable. The software developer might give the test cases and code to a tester
which performs the preparation and measurements of the test on the target. This eventually
burdens the software developer with extra work. But he might be the only one to spec-
ify the test cases quickly and correct. However, specifying test cases is usual for several
projects within ZF. So, test the specification has to be extended to WCET analysis. The
tester needs a lot of knowledge in order to provide a test frame that consists of the right
configuration of the hardware and software. This has to be done once and is comparable
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to hardware annotations when using aiT.
When processing the WCETs, one has to take into account that Tessy and aiT only pro-
vide the WCET of certain code snippets like a single function. Therefor, the global WCET
of whole processes and tasks has to be calculated from these values. These local WCETs
are assumed to be safe, in particular statically determined ones. A non-consideration of
software-sided interdependencies like mutual exclusion of WCETs of different processes
potentially leads to a too pessimistic global WCET. If the software is a black-box, it is
even not possible to determine the case-sensitive worst-case combination of execution
times for a certain task or process. Further, the non-consideration of hardware-sided inter-
dependencies potentially leads to a too optimistic global WCET. Such effects might occur
due to a dirtied cache, pipeline stall or an incorrect branch prediction in consequence of
interrupted code execution or a function call within the code. This could lengthen the
WCET of a code snippet because WCET analysis just determines the WCET of the code
under the assumption that it is executed as a whole. It is unknown if the simple accumu-
lation of WCETs provides a safer result than an exhaustive WCET analysis that takes all
(hardware-) effects into account, which assumably is not possible due to the black-box
character of the system.
Tasks with a short cycle time that run on an ECU might include supplied software (at
all). This is dependent on the concrete project. These software parts are a black-box
for ZF. They make a WCET analysis in early development phase difficult. So, only a
measurement-based or maybe a static WCET analysis of these processes is possible using
the final binary. This is late in development process. It should be investigated if it is possi-
ble to get WCETs from the supplier or to build an "empty" software level containing only
this supplied software. Then, analyzing them could be done simultaneously to the coding
phase of the ZF-software. Another possibility is to assume experience-based execution
times for these processes.

2.8 Summary

This chapter gives an overview of possibilities to determine (worst-case) execution times.
The common measurement-based execution time determination used by ZF easily pro-
vides execution times of processes and tasks. It takes interdependencies between the mea-
sured code and other software components, hardware and the operating systems implicitly
into account. A further measurement based WCET analysis approach uses a unit-test tool.
It might reduce the complexity and quickly provides a WCET estimation of small code
snippets like single functions. The use of the commercial static WCET analysis tool aiT
and more ways to gain WCET estimations and proposals to make the analysis easier are
described too.
The extra effort that is needed for a WCET analysis early in development process is sig-
nificant. It also turns out that black-box testing is not suitable if very accurate results are
needed. The described approaches using aiT or Tessy provide first WCET estimations of
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single code snippets and maybe whole processes or tasks and move that from the system
integration phase to the module-test phase of the V-model. The ITA method provides first
WCET estimations in implementation phase but the results might be very imprecise. The
WCET problem is a trade-off between effort and safety, like described in [22, p. 1]:

"It is really a business issue, where the cost of a timing-related failure has to
be weighed against the cost of various means of preventing or handling such
a failure."

The described approaches focus on software provided by ZF. Like described in section
2.7, further software parts which are not developed by ZF have to be taken into account as
well. It has to be investigated how to get precise WCETs of the supplied software early
in development process. Further, section 2.6.3 describes that the statically determined
WCET of a small code snippets depends on the development phase in which they are an-
alyzed. Using compiler- and linker-settings of the final build process probably provides
more precise results for early estimations. This section also partly invalidates the assump-
tion that an accumulation of WCETs leads to a too pessimistic global WCET. Thus, an
analysis of the final system is necessary for very precise results. When making a decision
about the approach to take respectively which effort to invest, the following aspects should
be considered besides the above mentioned statement. How critical is the violation of a
deadline? Is it sufficient to work with WCET estimations? Does a static WCET analysis
tool support future hardware platforms?
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3.1 Preface

The scheduling analysis tool SymTA/S is developed by Symta Vision [43], a split-off of
Technical University of Braunschweig. SymTA/S stands for Symbolic Timing Analysis
for Systems. In the following, SymTA/S v1.3 is described. It calculates worst-case re-
sponse times (WCRTs) for tasks on a single processor, for messages on a shared bus and
for end-to-end paths in a system, e.g. from a sensor via an ECU to an actor communicat-
ing by a bus. A WCRT of a task is the time between task activation and task termination.
So, the worst-case execution time (WCET, described in section 2.1) of the task is not the
only crucial factor for it. The task’s WCRT might be lengthened by preemptions, block-
ing delays on an exclusive resource or interruptions by ISRs, for example. Besides these
scheduling and end-to-end timing analyses, SymTA/S provides a sensitivity analysis and
an optimization function for processors as well as buses. So, it is intended to be used for:

• ECU scheduling verification, timing budgeting and optimization

• bus scheduling verification and optimization

• system scheduling verification and optimization

In contrast to timing tests or simulation of a system, scheduling analysis calculates best-
and worst-case situations respectively WCRTs. Therefor, it is assumed that safe results are
provided. However, the results might be too pessimistic because the calculated situation
does not occur in reality. Because of that, SymTA/S visualizes the worst-case situation in
order to check the results. A further advantage of scheduling analysis is the possibility to
easily examine system parameter changes. Time-consuming tests of the system behavior
could be determined before new code is implemented. Such verifications are necessary,
primarily in complex systems where the effect of a parameter change is not detectable at
first sight. For example, the reduction of a task’s WCET might lead to a higher bus load
that could affect the whole system behavior.
SymTA/S provides analyses for scheduling strategies of operating systems and bus sys-
tems typically used in automotive industry. This includes several OSEK variants and
AUTOSAR OS as well as analysis of bus systems like CAN and FlexRay. The following
section introduces the OSEK OS standard and a specific implementation.
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3.2 Automotive Software Example using OSEK OS

3.2.1 OSEK OS Standard

OSEK (Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug) is a
registered trademark of Siemens AG. One of the most important specifications contrived
by the OSEK respectively OSEK/VDX standardization committee [35] is the embedded
operating system OSEK OS, often treated synonymously with OSEK. Further OSEK spec-
ifications are a uniform communication environment for automotive control unit applica-
tion software (OSEK COM), a network management system (OSEK NM) or the OSEK
implementation language (OIL). Some OSEK parts, including OSEK OS v2.2.1, are stan-
dardized by ISO (number 17356). There exist several commercial OSEK conform op-
erating system implementations like osCAN, RTA-OSEK and ERCOSEK (by ETAS) as
well as ProOSEK. HSE Free OSEK [27] is an open source implementation of an OSEK
conform operating system by the University of Applied Sciences Esslingen.
According to its specification [34], OSEK OS is a multitasking capable single processor
operating system for embedded systems. In order to keep application software portable
to different ECUs, it has standardized interfaces between application software and oper-
ating system, e.g. service calls, type definitions and constants. The operating system is
compiled and linked together with the application software. All resources and tasks are
specified statically.
The operating system specification introduces interrupts and tasks. A tasks provides the
framework for the execution of functions [34, p. 16]. There are three processing levels,
illustrated by figure 3.1. The priorities of tasks and interrupts are specified statically
and increase with the number. Interrupts have higher priorities than tasks and can always
preempt them. Tasks are scheduled according to their priority which is described later.
The OSEK OS specification distinguishes two task types: basic tasks and extended tasks.
A basic task only leaves the processor when it terminates, the scheduler switches to a
higher priority task or an interrupt occurs. An extended task additionally can leave the
processor by entering a waiting state. Figure 3.2 illustrates the task state model of an
OSEK OS extended task. State transitions terminate respectively activate are caused by a
system service, e.g. when a task requests an unavailable resource respectively it gains the
requested resource. Transitions start and preempt are caused by the scheduler and repre-
sent the assignment respectively release of the processor. An extended task can enter the
waiting state by a system service, e.g. in order to wait for an event like an interrupt. The
counterpart of this wait transition is the release transition. It causes a waiting extended
task to enter the ready state and is taken when at least one event the task waited for oc-
curred. The task state model of basic tasks differs in the absence of the waiting state. So,
extended tasks provide more synchronization points than basic tasks. On the other hand,
they require more resources (RAM).
According to the features of the OSEK OS implementation, it can be classified in one of
four so-called conformance classes (CCs). These CCs differ in the supported task types,
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Figure 3.1: OSEK OS processing levels, from [34, p. 12]

Figure 3.2: OSEK OS extended task state model, from [34, p. 17]
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the possibility of multiple activations of a task and the number of tasks per priority. The
simplest CC is BCC1 (Basic CC 1). It supports only basic tasks with different priorities
and 1 activation per task. In contrast, BCC2 supports multiple tasks per priority and mul-
tiple activations per task. ECC1 and ECC2 (Extended CC) are corresponding with the
difference that they support basic and extended tasks.
An OSEK OS task is activated, i.e. set to ready state, if no resource except the processor
is missing by the system calls ActivateTask() or ChainTask(). The former one might be
called by an Interrupt Service Routine (ISR), amongst others. Task termination is per-
formed by the system calls TerminateTask() or ChainTask() that have to be called by the
task itself. The latter one terminates the running task and activates a certain task. The
scheduler determines the next ready task to be executed, i.e. set to running state, on the
basis of the priority of the tasks. Tasks with the same priority are ordered in a kind of
FIFO queue according to their activation order. A preempted task is set as the oldest task
in the queue. A released waiting extended task is set as the newest task in the queue. The
scheduler determines the oldest task which is in the ready respectively running state and
which has the currently highest priority. So, low priority tasks might starve if always new
high priority tasks are set to the ready state. Figure 3.3 illustrates the working principle
of the OSEK OS scheduler. A call to ActivateTask() or ChainTask() enqueues a task in its
corresponding queue.

Figure 3.3: OSEK OS scheduler, from [34, p. 20]

OSEK OS supports different scheduling policies. The full preemptive scheduling allows
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the preemption of a running task at each instruction. A preemption is caused when a
higher priority tasks becomes ready or an ISR is executed. Re-scheduling occurs when:

• the scheduler is called explicitly

• a task terminates or is activated

• an extended task enters or leaves the waiting state

• a resource is released

• an ISR returns

During execution of an ISR, scheduling is disabled, see figure 3.1. The non-preemptive
scheduling allows the re-scheduling only at certain points:

• task termination

• explicit call to the scheduler

• entering the waiting state (extended tasks)

OSEK OS provides the possibility to create non-preemptive groups of tasks. Tasks within
this group can only preempt each other at certain re-scheduling points. Tasks with a higher
priority than the highest priority task within the group can preempt every task of the group
at any point. One way to create such a group is to use a so-called (exclusive) internal
resource. This is no physical resource and has to be assigned to a task at system generation.
An internal resource is taken by a task when it enters the running state and is released at a
point of re-scheduling but not when it is preempted. The OSEK OS standard prescribes the
Priority Ceiling Protocol (PCP). So, tasks that share such an internal resource are known
as so-called cooperative tasks. Further, the PCP avoids deadlocks due to inconvenient
resource requests. According to the PCP, a cooperative task could inherit the priority of
the highest priority task within the group and therefore its priority is not static at all.
Imagine an OSEK system with periodic tasks and only one task per period. The highest
priority is set according to the shortest period and likewise the lowest priority to the longest
period. In case of full preemptive scheduling policy and no exclusive resources, the OSEK
system behaves like a Rate-Monotonic Scheduling (RMS) system without especially set
deadlines. In fact, the OSEK OS standard does not consider the specification of deadlines.
The OSEK OS standard just provides the general conditions to implement an embedded
real-time operating system.
The OSEK OS standard also allows different application modes of the operating system.
Each mode can have different task sets and interrupts. It is also possible that different
application modes share certain tasks or interrupts. A switch between these application
modes at runtime is not supported in the OSEK OS standard.
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3.2.2 OSEK Implementation in Automotive Industry

OSEK OS implementations used by ZF are RTA-OSEK, ERCOSEK or ProOSEK, de-
pending on the concrete project. The following explanations base on a certain automatic
transmission project. The corresponded ECU including a Renesas SH72 microcontroller
contains amongst others the following software parts: the initialization code and the op-
erating system from a supplier and the application software provided by ZF (this might
differ in other projects). The operating system kernel is configured to provide a fast in-
terrupt and several tasks with certain periods: amongst others 10ms, 20ms, 30ms, 50ms,
100ms and the background task. The used OSEK OS kernel is configured to BCC1. Thus,
there are only basic tasks that can be activated only once per period. All tasks are set to
preemptive scheduling. These task are activated through a call to ActivateTask() within the
fast interrupt. So, each task switch causes an overhead which has to be taken into account
by a scheduling analysis if possible. Further, possible activation offsets are restricted to a
resolution of the fast interrupt.
An (activation) offset is a startup delay of a task within a group of synchronized tasks,
e.g. tasks on the same ECU. If the offsets of all tasks are zero, they are activated at the
same time. So, the introduction of offsets might decrease the number of preemptions or
blocking time of a task. A former ZF project using a different ECU has a higher resolution
because certain functionality had to be realized in software. This provides a higher task
activation resolution but causes more operating system overhead. The offsets depend on
the concrete project.
The periodic tasks of the automatic transmission project are divided into so-called
processes. These processes in principle are calls to functions that call further functions.
The execution order of the processes is hard coded. The execution and timing related con-
trol is performed by the so-called process flow control. The processes of the 100ms-task
up to the 10ms-task share a common internal resource which is assigned to these tasks
statically. So, these tasks perform cooperative scheduling and can not preempt each other.
This is facilitated by the implemented PCP in the used OSEK OS implementation. Within
this task group, re-scheduling is only possibly on process boundaries. When a process fin-
ishes, a flag indicates whether a further task of the cooperative group is activated. In this
case, the scheduler is called and a higher priority (cooperative) task might be executed.
The internal resource is handled automatically. However, each task and process of this
group might be preempted by the interrupts or tasks with a priority higher than the 10ms-
task. So, a scheduling analysis has to take these blocking times due to this cooperative
scheduling into account.
The software running on the ECU distinguishes between different so-called operation
modes (OM) according to the actual condition of the automatic transmission. These OMs
are determined by the operation mode manager (OMM), a software subsystem. The op-
erating system itself provides only one application mode because a switch between appli-
cation modes at runtime is not possible. The current implementation has amongst others
following OMs: initialization, cruise, limp home and shutdown. The actual one depends
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on conditions like ignition state or position of the transmission selector lever and is deter-
mined by the OMM which causes OM transitions if necessary. Such a transition is only
possibly at a certain task. It causes overhead because a special transition function has to
be called which initializes all task for the new OM. The used OSEK OS implementation
supports only 32 tasks. Therefor, different OMs share them. This is realized by providing
so-called process tables. They contain several processes which are executed by a certain
task in a certain mode. Further, the appropriate process tables are determined by a so-
called container table. There exist one container table per task and OM. According to task
and OM, the OMM determines the container table for each task which contains pointers
to the process tables so that the right processes are executed.
The control of the timing constraints during operation is performed by the process flow
control. That highly depends on the concrete project. A deadline in the broadest sense
is determined by the automatic transmission mechanics. In a fictitious example, a gear
switch would take several seconds and the hydraulic pressure to control the clutches would
be calculated by the 10ms-task. If the 10ms-task would not finish before it is activated the
next time, this would possibly lead to a less comfortable gear switch due to a higher clutch
pressure step. The task would not be activated subsequently because the OSEK OS im-
plementation is configured to BCC1. So, it would be tolerable that the 10ms-task misses
one activation. If it would not be finished at the next but one activation, an error handler
would be called. Depending on the concrete error, error handling could lead to an ECU
reset or the software switches to the limp home mode. There are no hard deadlines within
the system in the proper meaning of deadlines. The process flow control also controls
the activation (order) of processes. For example, some processes are executed only every
second or third time the correspondent task is executed. In general, it is not easy to answer
if an automatic transmission is a hard real-time system and if harder timing constraints are
necessary or if it has to be fault-tolerant in some cases. A rarely occurring less comfortable
gear switch possibly is more acceptable for the driver than a blinking control lamp within
the cockpit. In general, error handling and several mechanisms, e.g. how the cooperative
scheduling is realized, depends on the project.

3.3 SymTA/S Internals

3.3.1 General Structure

The general structure of the SymTA/S tool suite is illustrated by figure 3.4. The core
component is the analysis engine. It provides all basic scheduling analysis functionality.
The analysis of certain resources is realized by component libraries. They are provided by
Symta Vision or third party developers. Currently, libraries are available for several OSEK
variants, e.g. RTA-OSEK and a generic OSEK OS, AUTOSAR OS, CAN and FlexRay as
well as for further scheduling policies like RMS, earliest deadline first and time division
multiple access. These libraries contain specific information about necessary scheduling
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Figure 3.4: SymTA/S tool suite, from SymTA/S Main manual v1.3 page 16

parameters like task period, frame size or priority. SymTA/S allows creating own libraries.
The input parameters for scheduling analysis are the scheduling policy, the BCETs and
WCETs of the tasks/processes running on the processor, the size of messages on a bus
and the activation frequency of the tasks respectively messages. In order to precise analy-
sis, further parameters can be given. These are activation offsets (described in section
3.2.2), further assumptions about (dynamic) activation of bus messages, operating system
scheduling overhead, general blocking delay or the use of an exclusive resource. Espe-
cially the WCETs are very important input parameters. Using lower WCETs than the real
ones could lead to a positive scheduling analysis result but might cause problems during
later system operating. Using too high estimated WCETs could lead to a negative analysis
result that could not occur in reality. Because of that, chapter 2 is devoted to execution
time analysis. SymTA/S also provides import interfaces in order to easily import systems
respectively component descriptions like illustrated in figure 3.4. Unfortunately, an im-
port interface for files stored in the description language format of OSEK (OIL) is not
implemented in v1.3. However, it is possible to write and include own import scripts. An
integration of WCET analysis tools like aiT (see section 2.5.1) is imaginable.
The output of SymTA/S are the best-case and worst-case response times of each task, bus
messages and specified end-to-end paths as well as bus and ECU utilization. The WCRTs
can be checked against specified deadlines. Further, the worst-case situation of each task,
message and path can be visualized by Gantt-charts. The time axis within these charts is
relative to the worst-case situation. So, it starts with zero at the beginning of the situation.
SymTA/S allows generating a report file after analysis. This file contains all above de-
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scribed information and parameters of the system and its components plus the mentioned
Gantt-charts. It can be stored in common office formats.

3.3.2 Compositional Scheduling Analysis

SymTA/S follows the principle of compositional scheduling analysis. Figure 3.5 shows
a very simple system that is analyzed by SymTA/S. It helps illustrating the implemented
analysis approach. The OSEK-tasks (e.g. OSEK-Task1) and CAN-frames (e.g. CAN-

Figure 3.5: SymTA/S compositional scheduling analysis approach illustration

Frame0) are so-called application elements. They are mapped to corresponding resources,
i.e to an ECU with OSEK-scheduler (e.g. OSEK-ECU0) or to a CAN-bus (e.g. CAN0).
The arrows between them (e.g. E4) are so-called event streams that interconnect the
application elements. SymTA/S distinguishes between activation models and execution
models. Execution models are created by analyzing the execution elements locally on a
resource using the libraries described above. In order to perform this local analysis pre-
cise, information about the activation of an execution element is needed. This information
is transported by the event streams. These event streams can be used to carry activation
information as well as data-related timing information. The output event stream of a cer-
tain application element propagates a certain event model. This event model is the input
event model for the connected application element. So, analysis can be seen as flow-
analysis problem that can be solved iteratively using event stream propagation, see [45,
p. 3]. SymTA/S provides six event models. They are kept simple. So, not every possible
activation scenario can be modeled. These models are self-contained, i.e. each possible
change in the parameter values leads to one of the six models. Further, the parameters are
simple enough in order to be used by the common local scheduling analyses. So, three
parameters are used:

• period T

• jitter J
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• minimum distance between two events d

In terms of SymTA/S, a jitter is a possible delay of a periodic event [44, p. 23]. If the
jitter exceeds the period, theoretically two events can occur at the same time. This can
not happen in reality and therefor, the parameter d specifies a minimum distance between
two events. There are two classes of events, the periodic and the sporadic ones. Each
class has three models: simple, with jitter and with bursts. Figure 3.6 shows the lower and
upper event functions for each model. The lower event function n−act(∆t) determines the
minimum number of events that could occur during a time interval of ∆t. The upper event
function n+

act(∆t) determines the maximum number of events that could occur during ∆t.

Figure 3.6: SymTA/S event models, from [39, p. 4]

In some cases it is necessary to convert an event model into another one. The reason might
be that a certain application element requires a certain input event model, e.g. an actor has
to be activated periodically and not sporadically. In general, there are two possibilities to
hold the requirements. First, the event model interface method formally converts an event
model into another, e.g. a periodic one into a sporadic one. A further possibility is to force
the conversion of an event model into another one. So, the conversion of a sporadic event
model into a periodic one can be reached by introducing a little buffer, a register in terms
of SymTA/S. Some of these transformations are lossless, some are lossy. See [39, p. 4
cpp.] for detailed information.
Figure 3.5 illustrates an example where OSEK-Task0 is periodically activated by the ex-
ternal source Source0 with a period of 10. This value might stand for milliseconds, but
SymTA/S does not use units. So, the input event model for OSEK-Task0 is simple peri-
odic, carried by event stream E1. The tasks on OSEK-ECU0 are scheduled preemptive
whereas OSEK-Task0 has the higher priority. Before analysis, the output event model of
OSEK-Task0 and so the input event models for all other application elements are unknown
because they are not activated by an external source. In order to locally analyze OSEK-
ECU0, an input event model for OSEK-Task1 is needed. This is called a cyclic scheduling
dependency [45, p. 6]. SymTA/S propagates the known event models along the path until
each application element has an input event model. Then local scheduling analysis can be
performed which might change the event models. So, local analysis has to be repeated, the
event models propagated and so on. Analysis stops when the event models converge or a
timing constraint is violated. This approach works because scheduling does not change an
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event model period. Furthermore, the jitter along a path without buffering elements just
increases, because each application element adds a delay to an event that goes through the
system along a certain path of event streams.
In the example, OSEK-Task0 has a response time between 3 and 4.5. So, it adds a jitter
of 1.5 to its output event. Therefor, it has an output event model of T = 10 and J = 1.5.
This is the input event model for CAN-Frame0. Local analysis determines a response time
between 0.432 and 1.068 and now the output event model is T = 10 and J = 1.5 + (1.068
- 0.432) = 2.136. The described approach has to take more issues into account. In order
to avoid too pessimistic results, the synchronous timing behavior along end-to-end paths
has to be considered. The given example is straight forward because all elements are on a
full event-triggered path. So, they are implicitly synchronized to each other, i.e. they are
within a synchronized group. End-to-end analysis is described in detail by section 3.3.5.

3.3.3 OSEK OS Scheduling
In order to create an OSEK OS-ECU within SymTA/S, a so-called COM-CPU has to be
created. One or more tasks can be added and mapped to the COM-CPU. For each task, the
priority, best- as well as worst-case execution time, the scheduling policy (e.g. preemptive
or cooperative) and possible scheduling overhead have to be specified. Further, processes
and their BCETs as well as WCETs can be added. If choosing the cooperative scheduling
policy and declaring a shared resource, the involved OSEK-tasks preempt each other only
on process boundaries, like described in section 3.2.2. Figure 3.7 illustrates an OSEK-task
mapped to a COM-CPU. The task is activated by an external source with a period of 10
which is connected to the input port a. A task supports only one activation port. Other
input ports, i0 and i1 in figure 3.7, are intended to describe data streams which might be
important for end-to-end analysis. The output ports, o and o0 in figure 3.7, carry the out-
put event model derived from task activation and scheduling. Each output port carries the
same output event model because the task can be activated only by the single input port
a. Several tasks on an ECU might be activated synchronously. Therefor, the activation
sources have to be synchronized, clarified by a little clock within the source symbol, like
illustrated by figure 3.12. Thus, it is possible to realize activation offsets between tasks on
an ECU.
The OSEK OS scheduling policy described in section 3.2.2 is similar to that of RMS. In
addition, the blocking time due to the cooperative scheduling of processes has to be
considered as well as the activation offsets. So, the feasibility check for RMS (see [19,
p. 90]) has to be extended to consider this blocking time, see [19, p. 114]. If all acti-
vation offsets are zero, it is trivial to find the critical instant for each task. As real-world
systems often use activation offsets in order to reduce task preemptions by higher priority
tasks, finding the critical instant is not trivial. The scheduling analysis has to examine each
possible point within the hyperperiod of the schedule, i.e. the time range about the least
common multiple of the task periods. So, possible points are task respectively process
activations and terminations. SymTA/S reduces this mathematical complexity by sophis-
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Figure 3.7: SymTA/S OSEK-task

ticated algorithms [44, p. 29]. These algorithms are intellectual property of Symta Vision.
In addition to this complexity reduction, SymTA/S provides three analysis accuracy lev-
els. The most accurate full offset analysis examines all possible worst-case candidates but
takes most time. The medium accurate approximate offset analysis reduces the number of
possible candidates conservatively whereas the least accurate offset blind analysis ignores
the offsets. This leads to a pessimistic result but requires not much time. In general,
analysis time could grow linear with the number of worst-case candidates. The number of
candidates could also be increased using asynchronous schedules in the same system [44,
p. 30].
Further analysis refinements are possible by specifying process periods and offsets of
OSEK OS tasks. Period means that the process is executed only every e.g. second or third
time the corresponding task is executed. Given a period of two, an offset of one means
that the process is executed the second time, next the fourth time, the sixth, and so on.

3.3.4 CAN Scheduling

A CAN-bus is a broadcast bus where several processors are connected by a common in-
terface. Figure 3.8 illustrates the architecture of a CAN-bus. A CAN-frame can carry
between one and eight bytes user data. Each frame has a unique 11-bit ID that also de-
termines the priority of the frame. This ID identifies the sender of the frame as well.
According to this ID, a station on the CAN-bus decides if it has to receive the frame that
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Figure 3.8: CAN-bus architecture, from [13, p. 1]

is currently sent. The ID is also used for collision resolution via a carrier sense multiple
access collision resolution protocol. For detailed information it is recommend to read pa-
per [13]. Frame transmission is non-preemptive, i.e. a high priority frame can be blocked
by a low priority one.
In order to create a CAN-bus within SymTA/S, a so-called COM-bus has to be created.
One or more frames can be added and mapped to the COM-bus. For each frame, the prior-
ity and packet size has to be specified. Besides some overhead, only the given packet size
and bus speed are crucial for determining the transmission time. It is important to choose
the bus speed according to the used execution time unit. SymTA/S automatically takes the
scheduling overhead due to the access protocol into account. However, re-transmission
due to lost or damaged frames and sent frame requests, like described in [13, p. 4 cpp.],
are not considered by SymTA/S. It also assumes that data is written to the interface proces-
sor at the end of a task. Within a CAN frame, a so-called stuffing bit is inserted after four
identical bits. These additional bits lengthen transmission time of a frame. SymTA/S al-
lows making an assumption about these stuffing bits: inserting as much as possible, half
of the possible and no stuffing bits.
A CAN frame can be sent periodic, sporadic or on demand. Therefor, SymTA/S provides
CAN-frame transmission modes periodic, direct, mixed and none. Figure 3.9 illustrates
a CAN-frame with mixed transmission mode which is mapped to a CAN-bus. It is trans-
mitted periodically with a period of 10. Therefor, an external source is connected to the
COM-port a of the frame. Additional, it is transmitted if an event occurs on port i0. In
the example, it is set to simple periodic with a period of 15. The remaining port i1 is
connected to another external source which could be a task writing data into the buffer of
its CAN-interface. In contrast to an event occurring on i0, the arrival of this data does not
trigger a frame transmission. Therefor, the data has to be buffered which is illustrated by
the little R at port i1. This is an example for an event model interface, like described in
section 3.3.2. A frame with transmission mode none is ignored during analysis. Each port
pair except a and o correspondents to a so-called signal. In principle, a signal contains a

47



www.manaraa.com

3 SCHEDULING ANALYSIS WITH SYMTA/S

Figure 3.9: SymTA/S CAN-frame

message for a CAN-bus station. A CAN-frame is like an envelope that transports several
messages. The first port pair a and o is for frame-activation only. o is used to propagate
the output event model derived from COM-port activation. The other port pairs consider
signal-related event models. So, o0 has an output event model of T = 15 plus some jitter
because the signal is a so-called triggered one that causes a frame transmission. The out-
put port o1 has T = 10 plus some jitter because it is a so-called pending signal, i.e. it does
not trigger a frame activation and therefor its output event model is derived from that of
o. So, ports can be added only pair wise. The size and position of signals within a frame
are ignored during analysis. It is important to check if a signal that is thought as pending
signal is really set to pending within SymTA/S, even if the transmission mode of the frame
is set to periodic. The symbol left of the import port indicates the transfer property of the
incoming signal. So, the signal on port i0 shown by figure 3.9 is triggered respectively it
is responsible for frame activation. This is clarified by the little a. In contrast, the signal
on input port i1 is pending, clarified on the symbol of its incoming event mode.
CAN-frames that have a sporadic activating input event model describe a kind of dynamic
load. Besides assuming the activation of all possible frames, SymTA/S also allows as-
suming only the activation of periodic frames or bounding the number of asynchronous
activations to a certain value. So, analysis can be refined to get closer to the real-world.
As described in section 3.3.3, SymTA/S also provides three analysis accuracy levels for
CAN-scheduling.
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3.3.5 End-to-End Analysis

Preface

In order to avoid too pessimistic WCRTs, SymTA/S has to take timing dependencies and
especially synchronization dependencies along system paths into account. So, end-to-
end analysis has to consider local scheduling analyses and vice versa. In this section,
the difference between the described analysis accuracy levels becomes more apparent.
SymTA/S distinguishes between signal-path and event-triggered path analysis.

Event-Triggered Path Analysis

The event-triggered path analysis examines the cases where the output event of an applica-
tion element is the activating input event of the subsequent one. The application elements
are synchronized to each other in that way that a termination immediately causes activa-
tion. In figure 3.5, the termination of OSEK-Task0 on OSEK-ECU0 causes the immediate
activation of CAN-Frame0. The transmitted CAN-frame activates OSEK-Task2 on OSEK-
ECU1. After its execution, CAN-Frame1 is triggered which finally activates OSEK-Task1
on OSEK-ECU0. The activations are not buffered and so the activation of OSEK-Task1
directly depends on the activation time of OSEK-Task0. So, the application elements are
synchronized implicitly.
When choosing offset blind analysis, SymTA/S assumes a simultaneous activation of the
tasks respectively CAN-frames in order to determine the WCRTs. The Gantt-chart in
figure 3.10 illustrates this. Possible offsets due to the implicit synchronization along the
event triggered path are not considered. The end-to-end WCRT is composed of these pes-
simistic local WCRTs.
When choosing full offset analysis, the results are less pessimistic, illustrated by figure
3.11. Under consideration of the given timing dependencies, SymTA/S recognizes that
CAN-Frame1 is never blocked by CAN-Frame0. Further, the activation of OSEK-Task1 is
correctly not simultaneous with OSEK-Task0. Again, the end-to-end WCRT is composed
of the local WCRTs.

Signal-Path Analysis with CAN-communication

Signal-path analysis catches the cases where communication is buffered like that is a com-
mon case in automotive industry. Such paths through the system usually do not carry ac-
tivation events. Instead, they are carrying data, e.g. sensor data. In order to describe this
issue, an extended version of the system described above is used. It is illustrated by figure
3.12. The communication per CAN is buffered, i.e. the termination of OSEK-Task0 does
not activate the CAN-Frame0. Instead, the data is written to a register. CAN-Frame0 is
activated periodically by Source1 with a period of 10 and reads the register every time it is
activated. After transmission, the data is written to a register that is read by OSEK-Task2
which is activated periodically by Source2 with a period of 10. After termination of this
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Figure 3.10: SymTA/S offset blind analysis Gantt-chart
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Figure 3.11: SymTA/S full offset analysis Gantt-chart
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Figure 3.12: SymTA/S example system with buffered CAN-communication

task, the data is written to a register again. This register is read by CAN-Frame1 which is
activated periodically by Source3 with a period of 10. After transmission, CAN-Frame1
activates OSEK-Task2 immediately. Source0 and Source1 as well as Source2 and Source3
are synchronized. The little clock within the sources clarifies that. The events triggered
by the synchronized sources have an offset. The activation of CAN-Frame0 has an offset
of 5 to the activation of OSEK-Task0. So, the data written by OSEK-Task0 just waits a
time span of 0.5 before it is transmitted by the frame when assuming a WCET of 4.5 for
OSEK-Task0. This is done similarly for Source2 and Source3 on OSEK-ECU1. However,
the "clocks" of OSEK-ECU0 and ECU-ECU1 are not synchronized. So, SymTA/S has to
assume a delay of 10 on E0 which is the reading period of the register CAN-Frame0 writes
to. The reason is that the analysis leaves a so-called synchronized group of application el-
ements. Synchronized groups are activation elements that are activated by synchronized
sources or which are synchronized implicitly (described in the antecedent section). This
delay is illustrated by figure 3.13. Analysis is performed with full offset method. The
buffered communication has further effects on analysis. CAN-Frame0 and CAN-Frame1
as well as OSEK-ECU0 and OSEK-ECU1 are not synchronized any more, whether implic-
itly nor explicitly. So, SymTA/S assumes simultaneous activation of the task respectively
frames in order to determine the WCRTs.
It is important to note that using buffered communication and different synchronization
groups can lead to numerous under- and over-sampling effects, i.e. data is written more
often than it is read and vice versa. Under-sampling is easy to handle because the last
read data is always up-to-date, i.e. one data instance can be read one time at most. In
this case, SymTA/S assumes a maximum waiting time between two synchronized groups
which contributes to the global (path) WCRT. This maximum waiting time is the max-
imum distance between two writing events, e.g. the writing cycle time plus jitter. This
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Figure 3.13: SymTA/S buffered CAN-communication Gantt-chart extract

results from the examination of a certain data instance. If a higher delay would be as-
sumed, e.g. because the reading cycle time is higher, another data instance would be read
and not the examined one. So, the maximum distance between two writing events is the
longest time a certain data instance can wait before it is overwritten.
On points of over-sampling, a data instance could be read multiple times. So, SymTA/S
provides two analysis semantics: First Through and Maximum Age. The First Through
semantic determines the WCRT which the data needs to traverse the end-to-end path the
first time. The maximum waiting time between two synchronized groups is the maximum
distance between two reading events (e.g. period time plus jitter), see [44, p. 34]. Imagine
the above described example with buffered communication in figure 3.12. However, the
periods of Source0 and Source1 are set to 25. So, over-sampling occurs on E0 respectively
OSEK-Task2. Using First Through semantic, the delay on E0 is 10 because CAN-Frame0
writes the register every 25 time units, plus some jitter of frame transmission, but OSEK-
Task2 reads the register with a cycle time of 10 without jitter. So, the data waits at most
10 time units in the register before it is read the first time.
SymTA/S catches much more situations that could occur due to over- and under-sampling
effects. A description would go beyond the scope of this work. Because over-sampling
allows reading the same data multiple times, it might be of interest when the last instance
of the data has traversed the path. The Maximum Age semantic determines the WCRT
of the data which is read last at the over-sampling point. The next read access at the
over-sampling point would read another data instance. In the example which is illustrated
by figure 3.12 and where the periods of Source0 and Source1 are set to 25, a maximum
waiting time of 25.636 is determined on E0. That is the maximum distance between two
arriving CAN-frames [44, p. 34] which consists of the sender cycle time plus the sender
sided jitter. In the worst case, the data has to wait this time span in the register until it is
overwritten with new data.
In some cases it is necessary to know how many instances of the same data traverse the
path respectively reach the end. Imagine unsynchronized over-sampling on a register that
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is written with a period of 25 and read with a period of 10. So, the same data can be
read 2 or 3 times within a period of 25 if writing takes less than 5 time units. The max-
imum number of read data instances might be derived from the difference of the BCRTs
using First Through semantic and Maximum Age semantic. For example, the difference
between both analyses is assumed to be 22 time units and the reading event occurs every
10 time units. So, maximal 3 data instances could traverse the path. For example, the
first at t = 0 relative to the BCRT when using First Through semantic, the second at t =
10 relative to this BCRT and the third one at t = 20 relative to this BCRT. The BCRT
has to be taken for both analyses because it is assumed that both analyses start from the
same situation where the data is read immediately after writing. Unfortunately, the BCRT
analysis does not work properly. For example, the sub-path from OSEK-Task0 to CAN-
Frame0 in the system illustrated by figure 3.12 always contributes 5 time units to the path
WCRT because the CAN-Frame0 is activated with an offset of 5 to the task and the task’s
WCET is below 5 time units. During BCET analysis, this 5 time units are not taken into
account. When removing the synchronization of Source0 and Source1, the sub-path from
OSEK-Task0 to CAN-Frame0 correctly contributes 3 to the path BCRT because SymTA/S
assumes the BCET of OSEK-Task0 which is about 3 and an immediate reading event of
CAN-Frame0. This BCRT analysis problem is fixed in higher versions of SymTA/S. Sam-
pling effects due to jitter also have to be taken into account. They are described later in
section 3.5.
The SymTA/S user should be able to understand and to interpret the results displayed be-
cause of the numerous effects that could occur. Especially, it is necessary to understand
why SymTA/S assumes a certain blocking time in a certain situation. This gives addi-
tional information about the correct system modeling within SymTA/S which has to be
done very carefully.

Signal-Path Analysis with FlexRay-communication

SymTA/S also allows scheduling analysis using FlexRay-communication. FlexRay pro-
vides deterministic frame transmission following the Time Division Multiple Access ap-
proach. Each frame has a fixed (time) slot which is used for transmission. In principle,
only the bus configuration is needed for analysis, i.e. time slot length, which frame is
assigned to which time slot, etc. SymTA/S provides the import of the standard FlexRay
exchange format.
Imagine the example system illustrated by figure 3.12 with a FlexRay- instead of CAN-bus
with a cycle time of 10. If the FlexRay-bus and both ECUs are not synchronized, Sym-
TA/S assumes a delay of 10 on each event-stream between ECU and bus like illustrated
by figure 3.14. Again, implicit synchronization that might lead to less pessimistic delays
is not considered by SymTA/S. Path analysis with CAN-communication would lead to the
same results if the CAN-frames are asynchronous to the sending task respectively ECU.
FlexRay allows the synchronization of the bus with all connected ECUs. Such full syn-
chronized systems might have short response times but are less flexible, e.g. when in-
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Figure 3.14: SymTA/S asynchronous FlexRay-communication Gantt-chart
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serting additional code. Figure 3.15 illustrates the path WCRT using a full synchronized
configuration of the example system that is described above (compare with figure 3.14).
Obviously, the delays between task termination, frame transmission and frame reading
are reduced and sampling effects due to jitter does not occur any more. However, if the
WCRT of the 10ms-task on OSEK-ECU0 increases, the synchronization might have to
be changed. The synchronization configuration is determined by the design space explo-
ration of SymTA/S (see section 3.3.7). FlexRay-scheduling is not examined further in
scope of this work because the examples described later use CAN-scheduling. However,
the example shows that FlexRay-analysis in combination with the design space exploration
functionality might be useful for the development of such full synchronized systems.

3.3.6 Sensitivity Analysis Plug-In

The SymTA/S sensitivity analysis plug-in determines the sensitivity of the system with
respect to a certain system parameter. This functionality can be distributed to several
computers. On the one hand, sensitivity analysis checks how a parameter can be changed
without overloading the processor or violating a timing constraint. So, the plug-in can
be used to determine a safety margin within an existing system. On the other hand, it is
determined how certain parameter has to be changed in order to fulfil a timing constraint.
It is important to note that it is not sufficient to check only the resource speed sensitivity. It
is necessary to the check each task’s WCET because utilization based schedulability tests
do not guarantee meeting all timing constraints, see section 3.4.3. In case of a not working
system, it can help determining which parameter to change in order to make the system
working.
In particular, SymTA/S provides the sensitivity analysis of the WCET of tasks, processes,
bus messages, of the resource speed and of the source period and jitter. The investigated
parameter is varied and it is checked if the systems still fulfils all timing constraints, e.g.
an end-to-end-path constraint. The appropriate value is searched by a binary search [45,
p. 16]. The search interval depends on the fulfilment of all system constraints and on pre-
defined values like maximum resource utilization. The sensitivity analysis considers the
variation of only one parameter per timing constraint. For example, the analysis result of
this parameter would lead to the predefined maximum processor utilization. Figure 3.16
shows the sensitivity output of the resource speed analysis. This analysis determines the
spare respectively necessary processor speed which allows meeting all system constraints.
The described analysis is a so-called one-dimensional sensitivity analysis. SymTA/S also
provides so-called dependency diagrams. They illustrate the effect of a parameter (jit-
ter or offset) on an application element’s WCRT. Figure 3.17 illustrates the influence of
Source0’s (period: 25) jitter on the WCRT of OSEK-Task0 (WCET: 4.5) from the example
system illustrated by figure 3.12. It easy to see that large source jitter, i.e. delayed task
activation, affects the WCRT of the subsequent task activation.

56



www.manaraa.com

3.3 SYMTA/S INTERNALS

Figure 3.15: SymTA/S synchronous FlexRay-communication Gantt-chart
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Figure 3.16: SymTA/S resource speed sensitivity analysis

Figure 3.17: SymTA/S jitter dependency diagram
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3.3.7 Design Space Exploration Plug-In
The SymTA/S design space exploration plug-in allows the optimization of priorities on
resources like busses or ECUs and of offsets on synchronized sources. Like sensitivity
analysis, the execution of this function can be distributed to several computers. After
choosing the search space, i.e. the parameters that will be optimized, the optimization ob-
jectives have to be selected. SymTA/s provides the optimization of individual system path
or jitter constraints. Further, global optimization objectives like minimization of average
path latency, minimization of parameter changes or the optimization of path and jitter con-
straints in general can be selected. In cases of path and jitter optimization, a penalty for
constraint misses can be set in order to guide the optimization in a certain direction. The
so-called SymTA/S design space exploration loop is illustrated by figure 3.18. In terms

Figure 3.18: SymTA/S design space exploration loop

of SymTA/S, a chromosome is a modifiable system parameter. An individual is a certain
system configuration which consists of an unmodifiable part and chromosomes. During
optimization, SymTA/S analyzes several individuals. Therefor, it is initialized with the
unmodifiable system parameters. For each individual to be analyzed, its chromosomes
are applied to SymTA/S. Depending on the analysis results, the optimization controller
creates the fitness values of the individuals according to the optimization objectives. The
individuals plus their fitness vectors are submitted to the evolutionary multi-objective op-
timizer. Considering the fitness vectors, it divides the individuals into two sets. Therefor,
the FEMO (Fair Evolutionary Multiobjective Optimizer), NSGA2 (Nondominated Sort-
ing Genetic Algorithm) or, as default, SPEA2 (Strength Pareto Evolutionary Algorithm)
are used. These sets are submitted to the optimization controller again. One set contains
those individuals to be deleted (eliminated). The other one contains those individuals on
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which mutation and cross-over operations are performed in order to create a new pop-
ulation. Then, the optimization cycle starts again. Optimization output is one or more
pareto-optimal individuals. I.e. it is not possible to improve the value of a parameter
without degrading the value of another parameter within the configuration. This holds for
all pareto-optimal individuals. It is very important to note that the optimal individual is
not guaranteed to be found. The reason is that mutation and crossover operations depend
on probabilities. So, a random number generator is initialized with a seed. In order to
get reproducible results, this seed has to be noticed. Further optimization parameters like
(initial) population size, number of generations and the mutation and crossover probability
could be set. However, the effect of these parameters is not investigated in detail in scope
of this work. Several optimization runs concerning the activation offsets of an example
system show that even using more and bigger populations just increases analysis time on
the test system but does not provide much better results in general. So, default values are
used in the following for design space exploration. Even manually generated configura-
tions might be sufficient and might be gained more quickly as long as the systems to be
analyzed are simple enough.

3.4 Scenario 1: Analysis of an Existing System

3.4.1 Preface

The first scenario to be examined concerns the analysis of an existing system that is al-
ready used for WCET analysis, see section 2.6.1. That is an ECU with Infineon TriCore
1766 processor running a certain OSEK OS-implementation and several tasks with peri-
ods of amongst others 10 ms, 20 ms, 30 ms, 50 ms and 100 ms. The task priorities increase
with decreasing period time, i.e. the fastest has the highest priority while the 100ms-task
has the lowest one. The tasks are divided into processes. The second fastest task is real-
ized as processes within the fastest task. They are executed every second time the fastest
task runs. This is taken into account by SymTA/S through process offset and period like
described in section 3.3.3. All tasks with a priority equal or lower than the 10ms-task can
preempt each other only at process boundaries. This is modeled by setting their task type
to cooperative and assigning a shared resource to them within SymTA/S. All faster tasks
can preempt these tasks anytime. ISRs can preempt all tasks anytime. The task activations
are synchronized and they have certain activation offsets.
It is intended to determine the execution times of several tasks respectively processes
which might lead to a potential scheduling problem when appearing in a certain (worst-
case) combination which shall be determined by SymTA/S. The system analysis is per-
formed by using both common execution time measurement methods that are described
in section 2.6.2. For precise scheduling analysis, the execution times of all processes
are required because a task might be blocked by a lower priority task due to cooperative
scheduling. Section 2.6.2 describes that the process execution times that are extracted
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from hardware-traces might lead to different task execution times than the task execution
times extracted from the same raw data. These effect on scheduling analysis is examined
in section 3.4.2. Section 3.4.3 describes scheduling analysis with process execution times
derived from INCA.
The used time unit is µs (10−6s) because SymTA/S provides only four decimal places
which were not sufficient when using ms (10−3s) due to the short process execution times.
The activation buffer is set to one because only one instance of a certain task is allowed to
be activated. So, the task’s period time is applied to each task as timing constraint.

3.4.2 Analysis using Execution Times derived from
Hardware-Traces

Analysis Using Task Execution Times

The following scheduling analysis bases on task execution times extracted from hardware-
traces like described in section 2.6.2. The debugger records only 850 ms, so that the ex-
ecution time measurement interval is very short. The ISRs that are extracted from the
hardware-trace are taken into account by determining the average period of each ISR. The
simple sporadic event model is assumed. The ISR activation is not synchronized and they
are assumed to be scheduled non-preemptive. The OSEK-kernel priority is set higher than
the task priorities but lower than the interrupt priorities, according to figure 3.1. The tasks
are set to preemptive scheduling because setting them to cooperative scheduling would
cause too pessimistic blocking times of high priority tasks.
Figure 3.19 illustrates the used SymTA/S model. It comprises 7 tasks (upper row of ap-
plication elements) and 13 ISRs (lower rows of application elements) and their associ-
ated activation sources. The model is refined by assuming an overhead of 0.92 µs per
task termination. The overhead caused by task activation could not be extracted from the
hardware-trace.
As first scheduling analysis result, the maximum processor utilization is 61.9%. Figure
3.20, which is extracted from the analysis report file RPF00, shows that each task meets
its timing constraint, i.e. the WCRTs do not exhaust the period times. The report files and
SymTA/S system files of all analyses are included by the enclosed archive. The synchro-
nized sources within the system and hence the task activation offsets are not listed. This
is fixed in newer versions of SymTA/S.
The sensitivity analysis individually checks the task WCETs, ISR activation periods and
their jitter. The maximum respectively minimum values are determined under which the
maximum processor utilizations of 97% (adjustable value) is reached respectively all tim-
ing constraints are met. So, sensitivity analysis for each task WCET and ISR source jitter
might be required to estimate a safety margin for the system. In the current example, all
task WCETs have a tolerance of at least 139% (see the enclosed report file RPF00), i.e.
at least 139% of the WCET of each task can be added to its current WCET. The system
would still meet all timing constraints under that circumstances.
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Figure 3.19: SymTA/S scenario 1: system model

Figure 3.20: SymTA/S scenario 1: observed paths using task execution times derived from
hardware-traces
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In principle, the design space exploration functionality is not required for this use sce-
nario because no problems are detected. Nevertheless, it could be used to check possible
system configuration optimizations that lead to shorter WCRTs. An exemplary optimiza-
tion run starts with the initial activation offsets. As search space, the activation offsets
of the synchronized sources on OSEK-ECU are specified. The smallest modification unit
is set to 100 because SymTA/S does not provide a higher one. However, for the cur-
rent example a smallest unit of 1000 is required because the activation offsets of the real
system are adjustable only in units of 1 ms. So, the activation offsets determined by Sym-
TA/S might be rounded arbitrary to multiples of 1000 for subsequent scheduling analysis
in order to represent a real configuration of the system. Another possibility is to use a
suitable time unit within SymTA/S, e.g. of at least 10 µs. This would reduce precision,
especially when dealing with very short execution times, because SymTA/S provides only
four decimal places. For design space exploration, all task WCRTs and the minimization
of parameter changes are specified as optimization objectives. Further settings are de-
fault (seed: 1201090819042). After approximately 90 minutes, SymTA/S determines no
better configuration than the initial configuration, running on the test system. On a more
powerful system, this analysis is assumed to run faster.

Analysis Using Process Execution Times

The second scheduling analysis uses the same system model and settings like the analy-
sis described in the antecedent section. Now, process execution times are used which are
derived from the same hardware-trace. The processes of some tasks are scheduled cooper-
atively like in the real system. It is intended to check the effect of the not-considered over-
head (described in section 2.6.2) on the analysis. Currently, the hardware-trace processing
scripts do not consider all overhead on process-level.
As result, all tasks meet their timing constraints and the WCRTs are much lower than the
ones based on task execution times, see figure 3.21 and report file RPF01. It is obvious
that the not considered overhead is not insignificant. The maximum processor utilization
of 54.9% is lower than that basing on task execution times. Obviously, the result based
on that input is unsafe and is not suitable for system verification. An adaptation of the
hardware-trace processing scripts is necessary when holding on this approach. Detailed
analysis results can be taken from the report file RPF01.
Sensitivity analysis on the process WCETs, ISR activation periods and jitter takes over
26 hours on the test system. This might be caused by the big search interval for the binary
search and the numerous processes that are analyzed. So, a lot of configurations have
to be tested. That lengthens analysis time. SymTA/S determines the maximum possible
WCET of each process and the maximum ISR activation period and jitter, see report file
RPF01. The WCET tolerance is very high. As analysis settings, the maximum processor
utilization is set to 97% and the task timing constraints are their periods. Design space
exploration takes approximately 90 minutes on the test system. The same settings are
used as described in the antecedent section. Again, SymTA/S determines no better system
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Figure 3.21: SymTA/S scenario 1: observed paths using process execution times derived
from hardware-traces

configuration for the current system.

3.4.3 Analysis using Execution Times measured by INCA

Scheduling Analysis

The execution times for the following analysis are measured by INCA while running a
SoftCar RT-script which is described in section 2.6.2. In order to provide a very precise
scheduling analysis, the process execution times are measured. As scheduling analysis
result, all tasks meet their timing constraints. This illustrated by figure 3.22 from report
file RPF02. SymTA/S determines a highest possible processor utilization of 97.64%. The
highest utilization measured by INCA is about 72%. This might lead to the assumption
that this scheduling analysis result by SymTA/S is too pessimistic. In fact, the processor
utilization is not sufficient for precise scheduling analysis because it is possible that the
processor is not overloaded but a task misses its timing constraint. For example, few
typing errors while modeling the system within SymTA/S modified the process-WCETs
so that the 10ms-task missed its timing constraint but the maximum processor utilization
determined by SymTA/S was about 98.1%, see report file RPF03. Even without typing
errors, the 10ms-task’s WCRT of 8943.11 µs is close to its timing constraint of 10 ms.
This WCRT situation is illustrated by the Gantt-chart in figure 3.23.
The interpretation of the scheduling analysis result has to take several aspects into account.
On the one hand, the combination of several measured maximum execution times, which
is determined by SymTA/S, eventually does not occur in reality and leads to pessimistic
results, see section 2.2.2. The used execution time measurement method causes overhead
that affects the results. Section 2.6.2 also describes that in the example project, INCA
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Figure 3.22: SymTA/S scenario 1: observed paths using process execution times measured
by INCA

Figure 3.23: SymTA/S scenario 1: Gantt-chart of the 10ms-task’s critical instant leading
to its WCRT (the white bubbles are the task’s processes)
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measurements implicitly include ISRs into the measured execution times. Therefor, it
is assumed that more ISRs are included through the given execution times that really
occurred. Additionally, it is easily imaginable that another INCA measurement could
provide (slightly) different results. Eventually, SymTA/S then determines a constraint
violation of a task’s WCRT, especially in a situation like here where a task just meets
its constraint. On the other hand, it can not be guaranteed that the measured maximum
execution times are safe, i.e. the WCET might not be measured but possibly occurs during
normal operation. Eventually, the WCET of a certain process or task would be higher than
the execution time measured by INCA which includes ISRs. This eventually might lead
to an optimistic scheduling analysis.
In order to provide a very precise scheduling analysis result, the worst-case situation has
to be measured that includes the combination of those execution times that leads to the
WCRT of a certain task. However, the software is a black-box and so it is not practicable
to identify and measure that worst-case situation due to the software’s (and hardware’s)
complexity. Recording execution times while running a SoftCar RT-script (that causes
high processor utilization) and using SymTA/S to determine a combination of execution
times that potentially could lead to a scheduling problem is just an attempt to determine the
worst-case situation which is practicable under the current circumstances. This approach
does not qualify to be safe, i.e. it does not qualify to provide results that are equal to or
more pessimistic than the worst-case situation for the reasons described above. Even if
SymTA/S would determine a scheduling problem, this situation is not guaranteed to be
the worst-case situation because the used maximum execution times measured by INCA
are not guaranteed to be safe. In general and in particular for the example project, it
is unknown if a potentially pessimistic combination of possibly unsafe WCETs results
in higher WCRTs than in the (unknown) worst-case situation. However, if it would be
assumed that the situation determined by SymTA/S is too pessimistic because it would be
assumed that the determined execution time combination does not occur in reality, it has
to be investigated if it can be guaranteed that this combination never occurs. Even if this
would be possible despite the software’s (and hardware’s) complexity, the determination
of the real worst-case situation with SymTA/S, which eventually leads to a scheduling
problem, requires case-sensitive execution times that occur in this worst-case situation.
At this point, black-box-tests like INCA measurements obviously are not suitable to gain
that information. Such a case-sensitive execution time analysis requires knowledge about
the software internals which are not known by a single (or few) ZF employee(s). Knowing
the case-sensitive WCETs of the worst-case situation implies knowledge about the worst-
case situation itself. So, SymTA/S is assumed to be not necessary then.
One possibility to shorten the WCRTs of several tasks is to move a process to a task
with longer cycle time. SymTA/S allows testing this without time consuming software
adaptation. In the current example, moving a process from the fastest task to a slower one
reduces the WCRT of all tasks except the 20ms-task, see report file RPF04 and compare
with report file RPF02. Note that this process movement probably is not allowed, e.g.
because the software within these tasks is supplied to ZF.
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Sensitivity Analysis

Theoretically, the sensitivity analysis can be used to determine a safety margin of a sys-
tem that bases on unsafe (measured) WCETs. It might also be used in the case when a
timing problem is identified and code modifications become necessary. SymTA/S could
make the decision easier which process(es) to adapt by determining the WCET of each
task respectively process that would be necessary to meet a specified processor utilization
or a specified timing constraint, see section 3.3.6.
The effort that is necessary to perform a precise (case-sensitive) execution time analysis
plus a well directed code modification eventually might be much higher than making just
a code modification that bases on sensitivity analysis results that use imprecise maximum
execution times. In every case, such a code modification requires a precise respectively a
re-producible execution time measurement method. INCA is not suitable for this purpose,
see section 2.6.2. It has to be decided if code modifications should be made although the
scheduling and sensitivity analysis probably bases on unsafe WCETs. It becomes appar-
ent again that black-box testing is not sufficient to gain very precise results respectively to
make a right decision how to act in case of a scheduling problem indicated by SymTA/S.
A sensitivity analysis on the example system with the constraint of 97% processor utiliza-
tion indicates no WCET tolerance for all processes after round 35 minutes because this
processor utilization is already met and no further constraints are violated, see report file
RPF02. It might be necessary to work with imprecise or unsafe WCETs, like in the cur-
rent project, and to examine the necessary execution time reduction(s) in order to allow
the 10ms-task meeting a WCRT of 8000 µs. The results of such a sensitivity analysis are
included by report file RPF05. Here, the analysis takes round 2 hours on the test system.
This increase of analysis time is caused by the different search intervals for the binary
search (see section 3.3.6) due to the new constraint. As result, reducing the WCET of
one of the fastest task’s processes about 21.9 µs allows the 10ms-task to meet the tim-
ing constraint of 8000 µs, see figure 3.24. It is also possible to reduce the WCET of the
10ms-task’s processes about 175.18 µs (see figure 3.24). This WCET tolerance can be dis-
tributed to the processes of the task. For example, a WCET reduction of 10ms_P1 about
80 µs, of 10ms_P3 about 35 µs and of 10ms_P6 about 60.18 µs allows meeting the WCRT
constraint of the 10ms-task, see report file RPF06. In order to play safe, a subsequent
scheduling analysis verifies that. Now, amongst others the 20ms-task has an increased
WCET tolerance that still allows meeting the new WCRT constraint of the 10ms-task but
also reaching a maximum processor utilization of 97%.
The sensitivity analysis result of the system under the assumption that a process is moved
from the fastest to another task can be found in report file RPF04. SymTA/S takes nearly
11 hours and determines process WCET tolerances of at least 66.45% for a process of the
second fastest task. This is the lowest WCET tolerance by far. Under that circumstances,
the system would still met all timing constraints respectively the processor utilization is
not above 97%.
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Figure 3.24: SymTA/S scenario 1: sensitivity analysis results with WCRT constraint of
8000 µs for the 10ms-task (from report file RPF05)

Design Space Exploration

The design space exploration plug-in could give hints about possible system parameter
optimizations. This might be necessary if a potential problem is identified. Even if
there are no problems, the design space exploration is intended to help optimizing the
system configuration, possibly in conjunction with code modifications, in order to shorten
WCRTs. For demonstration, the exploration of the activation offsets of the current
system is started with the initial task activation offsets. The synchronized sources on
OSEK-ECU are specified as search space in order to optimize the activation offsets.
Like described in section 3.4.2, the smallest modification unit is set to 100 because
SymTA/S does not provide a higher one. For the current example, a smallest unit of
1000 is required because the offsets are only adjustable in units of 1 ms. For a first
optimization run, the 10ms-task’s timing constraint of 10000 µs and the minimization
of parameter changes are specified as optimization objectives. All further settings are
default (seed: 1201090819042). SymTA/S determines 2 pareto-optimal configurations
(duration: 1:45 hours). One of these configurations is the initial configuration. The
new configuration allows the 10ms-task meeting a WCRT of 8175.17 µs, see enclosed
report file RPF07. The activation offsets determined by SymTA/S are rounded (math-
ematically) in order to represent a real system configuration for subsequent scheduling
analysis. Then, the 10ms-task’s WCRT is 8943.11 µs, so that there is no improvement
at all (see report file RPF08). Obviously, rounding the activation offsets to multiples
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of 1000 changes the WCRT optimizations in some cases, see table 3.1. Thus, an
appropriate time basis should be used in order to be able to use the system configu-
rations that are determined by SymTA/S as seen so that manually checks could be avoided.

opt. objectives 10ms-task 10ms-task all tasks
10ms-task’s

constraint [µs]
10000 8500 8500

report file RPF07(08) RPF09(10) RPF11(12)
fastest task [µs] 303.6 (303.6) 303.6 (303.6) 303.6 (303.6)

fast task [µs] 667.02 (767.02) 612.82 (612.82) 612.82 (612.82)
10ms-task [µs] 8175.17 (8943.11) 8175.17 (8479.69) 8175.17 (8788.91)
20ms-task [µs] 6072.5 (6572.5) 5967.98 (4958.78) 5867.98 (6572.5)
30ms-task [µs] 23860.95

(24511.27)
21006.75

(20912.29)
21906.75

(22511.27)
50ms-task [µs] 23450.09

(23950.09)
29150.09

(28950.09)
21650.09

(21950.09)
100ms-task [µs] 53792.42

(54596.94)
56692.42

(36598.72)
42192.42

(39442.74)
changed offsets 2 (1) 5 (5) 5 (4)
∑ WCRT [µs] 1018136.4

(1068091.36)
1026861.6
(958433.2)

934937.54
(917792.14)

Table 3.1: SymTA/S scenario 1: WCRTs resulting from design space exploration, values
in brackets results from rounded activation offsets (compare with initial system
configuration (figure 3.22), ∑ WCRT: 1030960.23 µs)

In order to get a better result, a second optimization is performed that starts with the initial
configuration too. However, the 10ms-task’s timing constraint is set to 8500 µs because
the exponential miss penalty for a missed constraint is activated by default. So, the 10ms-
task’s WCRT becomes a high optimization priority because this constraint is not fulfilled
in the initial configuration. SymTA/S determines 1 pareto-optimal configuration (dura-
tion: 1:55 hours). Unmodified, it allows the 10ms-task meeting a WCRT of 8175.17 µs,
see report file RPF09. After rounding the activations offsets to a representative configu-
ration, the 10ms-task has a WCRT of 8479.69 µs. Here, rounding the activation offsets
lengthens only the 10ms-taks’s WCRT. All other resultant WCRTs are equal or better than
that determined by SymTA/S. However, the 50ms- and 100ms-task’s WCRT is worsen in
comparison to the initial system configuration, see report file RPF10 and compare with
report file RPF02.
In order to investigate this further, a third optimization is performed. All task timing con-
straints (10ms-task: 8500 µs) and the minimization of parameter changes are specified
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as optimization objectives. SymTA/S determines 9 pareto-optimal configurations. Three
of them provide a WCRT of 8325.49 µs for the 10ms-task after rounding the activation
offsets to a representative configuration. One of those three configurations provides the
lowest weighted sum of all task WCRTs within the hyperperiod of 300 ms (after round-
ing). It is determined by the sum over all task WCRTs that are multiplied with the number
of their activations within the hyperperiod. Note that these weighted WCRTs do not qual-
ify to represent the overall WCRT of all tasks within the hyperperiod. One the one hand,
a task has its WCRT not every time it is activated. On the other hand, the fastest task
is activated more often than the 100ms-task and so a middle fastest task’s WCRT might
affect the overall WCRT more than a low 100ms-task’s WCRT. It is one possibility to
rate the system configurations. These weighted WCRTs of all investigated configurations
are listed in table 3.1. Scheduling analysis results using this special configuration from the
third optimization can be found in report files RPF11 (not rounded) and RPF12 (rounded).
In comparison with the initial system configuration (see figure 3.22), only the 50ms-task’s
WCRT is lengthened whereas all other tasks have better or equal WCRTs.
Surprisingly, an optimization which considers all task constraints provides the best 10ms-
task’s WCRT at all after rounding. However, the optimizations with only the 10ms-task’s
WCRT as optimization objective provided the same 10ms-task WCRTs like this config-
uration before rounding. So, rounding obviously causes precision loss and the need for
using an appropriate time base becomes apparent. Otherwise, manually checks of the op-
timization results are necessary in order to determine the best system configuration. The
comparison of the weighted sums of task WCRTs indicates that the more constraints have
to be optimized the more the average WCRTs are reduced. Further, setting the timing
constraints appropriate allows directing the optimization, e.g. on a special task WCRT.
Subsequent sensitivity analyses of all configurations do not determine higher WCET tol-
erances than before because the specified constraint of 97% processor utilization is still
met. A higher sensitivity analysis constraint would increase sensitivity analysis time and
might be unsuitable because a maximum allowed processor utilization of for example 99%
might be within the frequency fluctuation range of a real processor.

3.4.4 Conclusion of Scenario 1
The above described analyses clarify that the scheduling analysis that bases on the maxi-
mum execution times derived from hardware traces or measured by INCA is not sufficient
for system verification. It is late in development i.e. in the integration phase of the V-
model. INCA as well as the debugger method have weak points. Obviously, the schedul-
ing analysis that bases on the given hardware-trace does not catch the worst-case situation.
The hardware-trace is complex to analyze precisely and complicates the SymTA/S model
because the ISRs have to be considered additionally. It is not possible to give a state-
ment if the scheduling analysis described in section 3.4.3 represents a safe respectively
pessimistic or an optimistic result. A scheduling analysis that bases on another INCA
measurement of the same SoftCar RT-script possibly could lead to different results, see
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section 2.6.2. The difficulty to determine the worst-case situation is rooted in the black-
box character of the software. It is assumed that shorter INCA-measurement respectively
longer hardware-trace recording times do not improve the situation because it is necessary
to catch the worst-case situation respectively the worst-case combination of process exe-
cution times for very precise scheduling analysis.
In case of a slightly missed scheduling analysis, measuring the cycle time of the appro-
priate task might show that the task does not miss task activation. This possibly satisfies a
costumer although this does not guarantee the absence of a possible scheduling problem.
It is assumed that problems which occur due to too long execution times would be detected
earlier during conventional tests without the need for a special scheduling analyzer. This
also holds for the current example when the dynamic load like ISRs would not be con-
sidered. SymTA/S might be used to examine the affect of dynamic load scenarios on the
system. However, if ISRs are already included, it is hard to determine several scenarios.
If the timing behavior of the software must be guaranteed, one possibility is to determine
the WCET of manageable code pieces, e.g. single functions, processes and ISRs, and
then verify the schedulability by SymTA/S while assuming several ISR occurrence sce-
narios. However, using only (safe) WCET assumably requires the use of hardware that
is more powerful than necessary because the scheduling analysis result potentially is too
pessimistic. In return for these pessimistic assumptions, one gets a safe timing behavior
of the system given an accurate WCET and scheduling analysis. A possibility to make
(in particular dynamic) WCET analysis on black-box software less difficult is to change
the programming style. The execution time of the code should be as constant as possible,
like described in section 2.6.5. This reduces its execution time-related complexity. This
approach is only advantageous if the hardware-sided interdependencies on the execution
time are negligible in comparison to the software-sided interdependencies. This new pro-
gramming style might be applied stepwise in development process of ZF.
The sensitivity analysis might be helpful in case of safely identified problems. It could
make the determination of system parameters to be modified less difficult. The design
space exploration also might be required in case of safely identified serious problems.
However, changing parameters like activation offsets or even priorities is improbable in a
late development phase.
Modeling the system within SymTA/S, performing and evaluating the analysis are
straightforward. The input of numerous process execution times is time-consuming as
each task and source has to be added to the SymTA/S GUI. A script-supported input should
be preferred. Knowledge about the system configuration concerning activation offsets and
priorities is needed. Analysis can be performed by just one click. It takes several seconds
on the test system. The results are easy to interpret because no complicated assumptions
have to be made by the analysis tool.
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3.5 Scenario 2: Extension of an Existing System

3.5.1 Preface

The second scenario to be examined concerns the analysis of an existing system which
is extended by a further functionality. Figure 3.25 illustrates the extended system. It is

Figure 3.25: SymTA/S scenario 2: system model, the surrounded area represents the new
functionality to be investigated

intended to investigate the timing behavior of the communication with another ECU. The
involved system elements are surrounded by the black border within figure 3.25. Therefor,
data is written by the 10ms-task on OSEK-ECU0 (left). That data is sent via a CAN-bus
(middle). Then, the data is read by the 10ms-task on OSEK-ECU1 (right). Finally, its
output is send back to the 10ms-task on OSEK-ECU0 via the CAN-bus. It should be
examined which parameters affect the cycle WCRT respectively how many activations the
10ms-task on OSEK-ECU0 has to wait until the sent data reaches it, e.g. in scope of a
handshake protocol.

3.5.2 System Description

OSEK-ECU1 has a NEC V850 processor which runs an OSEK OS implementation. Ac-
cording to the corresponding OIL-file, the system provides several ISRs and tasks. The
tasks are set to be non-preemptive and can be activated only once per period. One of them
is activated periodically every 10 ms. However, no further activation assumptions can be
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made. Unfortunately, the existing software currently does not implement the functional-
ity described above. So, the WCET of the 10ms-task on OSEK-ECU1 is estimated to be
between 8 and 9.5 ms. That should simulate the possibly jittering WCRT of this task in-
cluding all blocking times and preemptions by interrupts and higher priority tasks. More
detailed information is not available because the ECU is supplied to ZF. No execution time
analysis is performed on this ECU.
OSEK-ECU0 runs the task set like described in section 3.2.2. Additionally, six interrupts
are considered, see figure 3.25. The used WCETs of the tasks and of these six ISRs on
OSEK-ECU0 are measured by INCA while running a SoftCar RT-script that causes high
processor utilization. Because not all functionalities are implemented, the measured exe-
cution times are assumed to increase in later software versions. So, the current maximum
execution times are an assumption. In contrast to section 3.4.3, here SymTA/S provides
measuring only a few processes at the same time. Their start addresses have to be assigned
manually to predefined measurement variables. Although precise scheduling analysis re-
quires process execution times, only the task execution times are measured because they
are assumed to be sufficient for investigation of the described timing behavior which is
described above. These task execution times do not contain the execution times of the
six ISRs that can be measured too. The sum of these ISR execution times and number
of activations are determined over an interval of 100 ms. So, the scheduling analysis just
uses average ISR execution times and activation frequencies. The modeled system is not
as precise as possible but it can be created quickly. The accuracy is sufficient because
pessimistic assumptions are made later and (timing-) information about OSEK-ECU1 are
rare. Precise but time-consuming measurements would have to be performed every time a
new functionality is implemented.
The CAN-bus is modeled by importing a DBC-file via the SymTA/S interface. The CAN-
bus speed is assumed to be 500 kBits/s. It transmits 10 frames which have transmission
modes periodic, direct or mixed. The CAN-frames of interest are frame_3 and frame_8.
Both are sent periodically every 10 ms and have a payload of 8 bytes. They are carrying the
data for the handshake protocol. Therefor, both frames are connected to the involved tasks
by event streams. So, it is a signal-path end-to-end analysis and not an event-triggered
one.
The activation sources of the periodic and mixed CAN-frames are synchronized with the
task activations on the corresponding ECU. Also the task activations on each ECU are
synchronized. This is realized by two "clocks" within the system. One for OSEK-ECU0
and one for OSEK-ECU1. Unfortunately, information about the activation offsets is not
(yet) available. So, they are assumed to be zero, i.e. all task and CAN-frames are acti-
vated simultaneously. Although this approach is pessimistic, it gives a safety margin to
the WCRT of the involved tasks. It is assumed that both tasks have a timing constraint of
10 ms. So, an activation offset of zero for the CAN-frames also works if the tasks have
a high WCRT but do not violate their constraints. More sophisticated activation offsets
probably shorten the task WRCTs and minimize the data’s waiting time in the CAN-frame
buffer. For a first analysis, this might be sufficient because SymTA/S allows trying several
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configurations very quickly.

3.5.3 Scheduling Analysis
Scheduling analysis determines a WCRT of 41.388 ms until the data can be read again
by the 10ms-task on OSEK-ECU0 while using the First Through semantic. The cycle
WCRT Gantt-chart is illustrated by figure 3.26 respectively the enclosed cycle Gantt-chart
"[RPF13] scen2-zero-firstthrough-normal_WCET". SymTA/S combines the local WCRTs
of the involved tasks and CAN-frames like described in section 3.3.5. Each local WCRT
and the corresponding Gantt-chart can be taken from the enclosed report file RPF13.
The WCRT of the path is determined like described in the following. SymTA/S deter-
mines a WCRT of 6.556 ms for the 10ms-task on OSEK-ECU0 during local scheduling
analysis. The data to be sent waits 3.444 ms in the buffer of frame_3. The frame is ac-
tivated to the next full 10 ms because the activation offsets are zero. The transmission
by frame_3 adds its WCRT of 0.543 ms. Now, the analysis leaves a synchronized group
and SymTA/S assumes a maximum delay of 10 ms on event-stream E2. OSEK-ECU1 and
frame_8 form the next synchronized group. The 10ms-task on OSEK-ECU1 is assumed to
have a WCRT of 9.5 ms. Due to the activation offsets, the data waits 0.5 ms until frame_8
is activated which adds a WCRT of 0.804 ms. After transmission by frame_8, SymTA/S
adds a delay of 10 ms on event-stream E15 because a synchronized group is left. Hence,
SymTA/S determines a cycle-WCRT of 41.388 ms. In fact, the data can be read 40 ms
after the corresponding activation of the 10ms-task on OSEK-ECU0. The reason for this
pessimistic delay assumption on event-stream E15 can be traced back to the fact that the
history about the synchronization with the starting point is not recorded by SymTA/S.
Figure 3.27 summarizes the cycle WCRT. The first WCRT of 31.338 ms is the WCRT of
the path that ends after transmission of frame_8. It does not take the last delay on event-
stream E15 into account. This clarifies that the data has to wait just 8.612 ms instead of
10 ms on event-stream E15.
Because the ECUs are not synchronized to each other, data could be lost during communi-
cation. Assume the case where the 10ms-task on OSEK-ECU1 reads the data immediately
after frame_3, which has its BCRT, has written it to the buffer. In a hypothetical case, the
frame-transmission jitters the next time i.e. the buffer is written after the 10ms-task on
OSEK-ECU1 read it. In the next cycle, the CAN-frame does not jitter and the data is over-
written before it is read. So, there are two instances of the first data in the system whereas
the second instance is missed. Like described in section 3.3.5, it is interesting how many
instances of the same data could traverse the path. This has to be considered when im-
plementing a handshake protocol. SymTA/S helps detecting this under-sampling effect
by using its Maximum-Age semantic for signal-path analysis. It indicates a greater delay
on the corresponding event-streams. The results from path analysis using this seman-
tic are included by report file RPF14 and the Gantt-chart "[RPF14] scen2-zero-maxage-
normal_WCET" within the enclosed archive. However, it does not help to determine the
number of data instances within the system. Such under-sampling effects might occur at
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Figure 3.26: SymTA/S scenario 2: cycle Gantt-chart extract which does not display all
blocking CAN-frames due to readability reasons
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Figure 3.27: SymTA/S scenario 2: cycle WCRT using First Through semantic (the first
WCRT does not take the delay determined by SymTA/S between frame_8
and the 10ms-task on OSEK-ECU0 into account)

each point where jitter occurs. It is supposed that SymTA/S would not determine that
the under-sampling effect in the example does not occur on frame_3 and frame_8 at the
same time under the current system configuration. Again, the reason it that it does not
record synchronization history between synchronized groups. So, this has to be checked
manually.

3.5.4 Sensitivity Analysis

In projects like this where precise parameters are unknown, the sensitivity analysis of
SymTA/S might be useful. Unfortunately, for this example it is not useful because the
WCET of the 10ms-tasks on OSEK-ECU0 and OSEK-ECU1 does not directly affect the
cycle WCRT in the current configuration. Sensitivity analysis does not determine the sen-
sitivity of activation offsets. So, its range of use is limited in this case. An analysis could
only determine the minimum period for the ISRs until the processor is overloaded or a
timing constraint is missed.
In order to clarify that system optimization could lead to less flexibility, a sensitivity analy-
sis of the system is performed. The analysis settings are a maximum processor utilization
of 97% and timing constraints for all tasks of OSEK-ECU0 that are equal to their pe-
riod. First, the task WCET tolerances of OSEK-ECU0 are analyzed with the initial system
configuration, i.e. all activation offsets are zero. SymTA/S determines the same WCET
tolerances no matter if using the First Through or Maximum Age semantic, see figure 3.28.
The results can be found in the enclosed report files RPF13 (First Through semantic) and
RPF14 (Maximum Age semantic). Here, the specified maximum processor utilization of
97% on OSEK-ECU0 is the crucial factor for determining the WCET tolerance. Assigning
the maximum WCET to the 10ms-task (7.92 ms) that is determined by SymTA/S allows
the 10ms-task still meeting its WCRT but the processor utilization is about 97%, see figure
3.29 or the enclosed report file RPF15. However, setting the 10ms-task’s WCET to 8.2
ms leads to a maximum processor utilization about 99.8% while the 10ms-task still meets
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Figure 3.28: SymTA/S scenario 2: sensitivity analysis results for First Through and Max-
imum Age semantic

Figure 3.29: SymTA/S scenario 2: processor utilization after assigning the maximum
WCET to the 10ms-task on OSEK-ECU0 that is determined by sensitivity
analysis using the First Through semantic
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its WCRT constraint, see enclosed report file RPF16. The same holds for the analysis us-
ing the Maximum Age semantic, see report files RPF17 (10ms-task WCET: 7.92 ms) and
RPF18 (10ms-task WCET: 8.2 ms). The results of sensitivity analysis using an optimized
system configuration are described in the next section.
In the case where a further process should be added to the system, the sensitivity analysis
could determine the execution time tolerance within the designated task. Like described
in section 3.4, it determines the highest possible execution time of the current code which
still allows meeting specified timing-constraints or processor load. This tolerance can be
compared with the new code’s WCET. If it is less or equal to it, it can be assigned to the
system and the system constraints should be verified by a subsequent scheduling analy-
sis. Like described in the antecedent section, the determination of the WCET has to take
several issues into account. If the WCET is above the WCET tolerance, the sensitivity
analysis helps to determine which process(es) to adapt in order to allow including the new
code.

3.5.5 Design Space Exploration
The design space exploration plug-in could be used to find a less pessimistic system con-
figuration for the example system. The activation offsets are not known at time of this
work. So, the optimization functionality quickly provides one possible, more realistic con-
figuration. Optimization objective is the WCRT of the end-to-end path from the 10ms-task
on OSEK-ECU0 to OSEK-ECU1 and return. In order to choose this path as optimization
objective, a constraint of 40 ms is specified within SymTA/S.
The smallest unit for offset changes is set to five although that is below the exact offset res-
olution. All further settings are default (seed: 1201090819042). The optimization starts
with the initial configuration (all offsets zero). As search space, the synchronized sources
on OSEK-ECU0 are specified. OSEK-ECU1 is not specified as search space because event
stream E3 between the 10ms-task on OSEK-ECU1 and frame_8 contributes only 0.5 to the
cycle WCRT and information are very rare for that ECU. Unfortunately, SymTA/S does
not find a configuration that reduces the cycle WCRT to 40 ms or better. That is not hard
to see because the offset between the 10ms-task and frame_3 had to be set to five. Then,
the WCRT of the 10ms-task has to be reduced to five or better. Obviously, this is not
possible. So, a further run with a smallest offset change unit of one, which is below the
real offset resolution, is performed. After approximately one hour, the design space explo-
ration plug-in determines one pareto-optimal configuration, see table 3.2. It reduces the
cycle WCRT to 38.338 ms, i.e. the data can be read 30 ms after the corresponding activa-
tion of the 10ms-task on OSEK-ECU0. Figure 3.30 respectively the enclosed Gantt-chart
"[RPF19] scen2-opt-firstthrough-normal_WCET" illustrate the optimized cycle WCRT.
The optimized system configuration affects the sensitivity analysis and leads to a reduced
task WCET flexibility. When using the optimized system configuration and First Through
semantic (report file RPF19), SymTA/S determines a lower WCET tolerance for the 10ms-
task on OSEK-ECU0 (0.74 ms) than when using the Maximum Age semantic (2.59 ms,
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report file RPF20). It is assumed that in the first case, the transmission of frame_3 is the
crucial factor. The WCRT of the 10ms-task has to meet the frame transmission.

old activation
offset [ms]

new activation
offset [ms]

old WCRT
[ms]

new WCRT
[ms]

fastest task 0 1 0.2954 0.2954
fast task 0 1 0.4954 0.4954
10ms-task 0 4 6.556 6.236
20ms-task 0 11 6.786 0.7348
30ms-task 0 18 6.9954 2.436
50ms-task 0 29 7.1364 1.566
100ms-task 0 84 7.8008 6.846
CAN-frame_3 0 1 0.534 0.534
cycle - - 41.338 38.338

Table 3.2: SymTA/S scenario 2: activation offset optimization results for OSEK-ECU0

The enclosed report file RPF21 and the Gantt-chart extract in figure 3.31 (from enclosed
Gantt-chart "[RPF21] scen2-opt-firstthrough-max_WCET") illustrates the situation where
the possible maximum WCET of the 10ms-task (6.07 ms) is assumed. A higher WCET
(e.g. 6.3 ms) would cause missing the intended frame transmission, see report file RPF22
and the Gantt-chart extract in figure 3.32 from enclosed Gantt-chart "[RPF22] scen2-opt-
firstthrough-over_WCET".
If Maximum Age semantic is used, the crucial factor is the processor utilization constraint
of 97% like for the not-optimized system configuration. The enclosed cycle Gantt-chart
"[RPF23] scen2-opt-maxage-max_WCET" illustrates the situation where the maximum
WCET of the 10ms-task (7.92 ms) is assumed. See also report file RPF23. The data to be
sent misses its intended transmission frame and takes the next frame which originally is
intended for the next 10ms-task activation. If the WCET would be higher (e.g. 8.0 ms),
the 10ms-task would still meet the task WCRT constraint but the processor utilization is
above 97%, see enclosed report file RPF24 and the enclosed Gantt-chart "[RPF24] scen2-
opt-maxage-max_WCET".
The optimization also can be used in the case where a further process should be added
to the system. It could determine necessary system changes in order to include the new
code. So, it helps to trade off the effort to include new code which would be necessary if
significant system parameter changes are required.

3.5.6 Conclusion of Scenario 2
The use of SymTA/S within a certain development phase in scope of system extension and
functionality-shifting highly depends on the WCET analysis of the new or shifted code.
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Figure 3.30: SymTA/S scenario 2: end-to-end path Gantt-chart extract from schedul-
ing analysis with optimized configuration First Through semantic (blocking
CAN-frames are not displayed due to readability reasons)
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Figure 3.31: SymTA/S scenario 2: Gantt-chart extract where the maximum WCET of the
10ms-task on OSEK-ECU0 is assigned to it while using the optimized sys-
tem configuration and First Through semantic (blocking CAN-frames are not
displayed due to readability reasons)

Figure 3.32: SymTA/S scenario 2: Gantt-chart extract where a WCET of the 10ms-task
on OSEK-ECU0 is assigned to it that is greater than the maximum possible
while using the optimized system configuration and First Through semantic
(blocking CAN-frames are not displayed due to readability reasons)
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If it would be possible to tightly examine the new code’s WCET by using similar code
respectively code with a similar functionality on another ECU, this can be made even be-
fore implementation phase. CAN-scheduling analysis just needs the bus-configuration,
so that a first scheduling analysis could be performed before implementation. This first
analysis might be pessimistic because the activation offsets of periodic task eventually are
not known and have to be assumed to be equal for each frame. If the ECU-WCETs can
not be examined, precise scheduling analysis with SymTA/S can be performed only late in
the development process, i.e. in the function respectively module test phase or even first
in the integration phase. That also depends on the general development phase of the sys-
tem. If not all functionalities are implemented yet, the system has more capacity. Possible
problems might just turn out late in development phase when the remaining functionalities
are implemented.
In an existing system, the sensitivity analysis allows determining a possible WCET toler-
ance. It has to be checked if it is sufficient for new code. The existing system might be
analyzed precisely before in order to avoid too pessimistic or too optimistic results. The
design space exploration only might give proposals to solve serious problems. SymTA/S
allows checking different system configurations quickly. So, the example illustrated by
figure 3.25 might be analyzed under the assumption that a FlexRay- instead of a CAN-bus
is used. If precise WCETs (and WCRTs) would be available, SymTA/S could be used as
optimization tool, e.g. for a ZF-private FlexRay-bus.
The analysis of the SymTA/S scheduling analysis results has to be made carefully. Small
changes in the system might lead to increased jitter that affects sampling effects in the
system. As SymTA/S does not record the synchronization history, it is necessary to check
if indicated sampling effects within the system could occur simultaneously. An improved
BCRT analysis and an automatic possibility to determine how many data instances could
traverse the path through a system are desirable.
It is not possible to simply add an existing SymTA/S system to another one. E.g. the
CAN-bus is imported and a previously analyzed ECU should be added in order to gener-
ate a complex system model. One can create the system model via GUI again which is
very time consuming. Another possibility is to combine the XML-files of both systems
via copy-and-paste. This is less time-consuming but error-prone.

3.6 Scenario 3: Timing Budgeting

3.6.1 Timing Budgeting

The third scenario has a quite theoretical character. It should be examined if the specifica-
tion of a timing budget in an early development phase, e.g. in system design phase of the
V-model, is useful and how the timing budget could be met. The antecedent sections turn
out that for verification respectively virtual extension of an existing system very precise
input values or, if those are not ascertainable, pessimistic input values have to be used
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in order to guarantee a certain timing behavior of a system. Deriving WCET estimations
for certain functions, processes, tasks or functional groups of the software is quite diffi-
cult. Simple cross-estimations with different hardware architectures are not suitable, like
described in section 2.6.5. An exception might be the following fictitious example. The
system described in section 3.4 has to be extended with further functionality. The current
ECU with TriCore 1766 is assumed to be not sufficient. So, the system’s timing behavior
should be determined if the software would run on a TriCore 1796. Both processors have a
comparable architecture, see section 2.6.6. The (worst-case) execution times of the exist-
ing code derived on the TriCore 1766 might be multiplied with the ratio of both processor
frequencies, whereas the TriCore 1766 has a frequency of 80 MHz and the TriCore 1796
of 150 MHz. However, it has to be investigated on the concrete hardware if the memory
accesses of the ECUs with both processors have the same speed-up like the processor fre-
quencies. If not, the overall speed-up could be limited by the memory accesses so that the
conversion factor has to be reduced. Afterwards, sensitivity analysis could determine the
execution time tolerance of the system that is available for the new functionality’s code.
This available execution time, less an optionally specified reserve, has to be distributed to
the code that has to be implemented. This reserve might be kept ready in order to satisfy
an increased timing budget demand later or to fulfil the resource requirements of further
product generations that use the same ECU but provide more functionality. Sensitivity
analysis only determines the maximum WCET of a process respectively task. So, timing
budgeting is assumed to be an iterative process. After specifying the timing budget for
a process or a part of the new functionality within a certain task, the system has to be
analyzed again in order to determine the remaining available execution time within other
processes/tasks. Eventually, a former specified budget or the reserve has to be reduced
in order to accommodate the system. So, these budget specifications might be very time-
consuming. Obviously, timing budgeting has to be made by an expert because they should
be close to the WCETs of the (new) code. Otherwise, it might be the case that function-
s/processes do not meet their timing budget because the execution time might increase in
later development phase due to necessary code modifications. These additional require-
ments might be satisfied by the kept ready reserve. Other software parts might not exhaust
their budget. This not exhausted timing budget possibly should not be used to satisfy an-
other requirement in order to avoid that each software developer writes code that exhausts
its timing budget in every case. Specifying timing budgets should motivate the software
developer to take the execution time of his code more into account.
This timing budgeting obviously becomes more difficult if no code is available at all. If
a certain code basis is re-used for new projects, execution time estimations respectively
a timing budget could be derived from former execution time investigations if similar
hardware is used, like in the fictitious example which is described above. The situation
even gets worse if there are no comparable projects. So, WCETs have to be estimated
"well defined" whereas the budgeting expert is assumed to not know the code. Schedul-
ing analysis is most precise when using process execution times if cooperative scheduling
is used. However, it might be not manageable to specify the WCET of single functions
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or processes. The more the execution time is distributed to small units, e.g. processes,
the more pessimistic the timing budget might have to be specified because the budget-
verification might be less case-sensitive than when specifying a timing budget for a whole
functional group of the software. This especially might hold for complete new systems
where no experiences from similar projects are available. However, case-sensitive WCET
analysis is very complex or might not be practicable at all, like described above.
Remember the fictitious example which is described above. WCETs for the basic soft-
ware’s tasks or processes could be derived from the existing system with the TriCore 1766
processor. Then, SymTA/S allows analyzing several system configurations, i.e. which
process is assigned to which task (period) or which task periods should be used at all.
Again, the sensitivity analysis and design space exploration could help finding a configu-
ration that provides low WCRTs and is flexible at the same time. However, this assumes
more or less precise maximum execution time estimations. If there is no information avail-
able at all, it is also possible to make assumptions about several system configurations. If
using a certain well defined system configuration, the newly implemented code has to be
more or less suitable to this configuration (under consideration of a kept ready reserve) in
order to avoid a system (configuration) re-design if the new code does not fit.

3.6.2 Control of the Timing Budget
The verification of meeting a given timing budget is not trivial. Like described in the
section 3.6.1, specifying timing budgets for small units is assumed to be more pessimistic
than specifying timing budgets for e.g. whole tasks because the budget-verification of
small units probably does not take software-sided interdependencies into account, i.e. is
not case-sensitive. However, a case-sensitive WCET analysis of greater units for budget-
verification is assumed to be very complex due to the software’s black-box character.
WCET analysis has to take hardware-sided interdependencies into account too, like de-
scribed in section 3.5. All issues require control over the WCET analysis. For that, the
current methods using INCA and hardware traces, that are late in development because
they call for a running system, are not suitable in general. A further possibility, compil-
ing and integrating the new code into an already existing system, measuring its execution
times and converting that results into that of the target system provides usable execution
times only when the hardware is comparable, like described in section 3.6.1. However,
one risks missing the WCET respectively the worst-case situation unless the code could
be stimulated with certain input when using INCA or the debugger method. A static tool
like aiT or the Tessy-approach seem to be more suitable.
The approach of code with constant execution times (see section 3.4.4) has advantages
concerning timing-budgeting too. It is assumed to make timing-budgeting and timing-
budget verification less difficult because the code’s execution times are assumed to be
less case-sensitive. So, a timing-budget can be specified for bigger units without the need
for case-sensitive timing-budget verification. So, even dynamic WCET analysis methods
like INCA measurements should provide reliable results, if the hardware-affects are in-
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significant, because the black-box character of the software carries no weight under those
circumstances. However, this approach might lead to higher execution times respectively
resource requirements, see section 3.4.4.

3.6.3 Conclusion of Scenario 3

On the one hand, the benefit of SymTA/S is restricted if no information about a system
is available, e.g. in very early development phase of a new project. SymTA/S analysis
results depends on the precision of its input parameters. If these values are very impre-
cise, SymTA/S results are imprecise. That could lead to a misjudgment of a project. On
the other hand, it provides a standardized format that allows storing, visualizing and the
exchange of system configurations (proposals) between developers. SymTA/S provides
the specification of several scenarios within one system. Each scenario can have its own
parameter values, e.g. for WCETs, activation offsets, CAN-frame activation assumptions
etc. This allows modeling several cases within one SymTA/S system instead of model-
ing multiple systems within SymTA/S. The sensitivity analysis helps to determine timing
budgets that base on a certain system configuration. The design space exploration allows
refining the system configuration if the WCETs become more precise. If no information
is known, SymTA/S allows comparing several system configurations and WCETs estima-
tion proposals. It also allows examining the effect when using another operating system
or bus-system and so could help to take the right decision.
The verification if the timing budget is met depends on the concrete project. Several ap-
proaches are described which have to be selected depending on the project. Here, the
sensitivity analysis might be necessary to refine the timing budget if it turns out that a
certain assumption is not suitable. In an extreme case, the system configuration has to be
changed supported by the SymTA/S’ design space exploration.

3.7 Summary

This chapter describes the standard OSEK OS and one possible implementation used in
automotive industry. OSEK OS specifies a real-time capable operating system. It does not
consider deadlines in the proper meaning. Rather, it has a static priority based scheduler
and implements the PCP in order to avoid deadlocks. Section 3.2.2 turns out that "real-
time" in automotive industry depends on how the safety relevant the system is. In case
of automatic transmission, a missed task cycle time in most cases is less critical than a
missed deadline in the vehicle dynamics control or brake system.
The scheduling analysis tool SymTA/S calculates best- and worst-case response times of
tasks, bus-frames or complicated end-to-end paths. The tool follows the so-called com-
positional scheduling analysis, see section 3.3.2. Local scheduling analysis is performed
by certain libraries, e.g. for OSEK OS, CAN or FlexRay. SymTA/S eventually assumes
pessimistic delays when leaving synchronized groups on end-to-end paths. So, the results
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are safe but might be pessimistic in some cases, like described in sections 3.3.5 and 3.5.
The examination of scenario 1 clarifies that the available WCET analysis methods, INCA
and processing of hardware-traces, are not suitable for system verification, see section 3.4.
The reason is the black-box character of the software that does not allow determining and
analysing the worst-case situation. Even using case-insensitive measured maximum exe-
cution times for scheduling analysis by SymTA/S does not qualify to provide a safe result
because the worst-case situation and the WCETs are unknown. Proposals to get WCETs
and safer WCRTs more easily are given. Analysis and modeling a system with SymTA/S
is straightforward. The GUI is well suited for the intended purposes. It is a "one-click-
analysis".
Scenario 2 is described in section 3.5. It suffers from the same problems like scenario 1,
especially when extending an existing system with a further functionality. However, the
handshake protocol-example shows the tool’s greatest benefit. It visualizes the worst-case
situation, e.g. of an end-to-end path within the system. These report files and Gantt-charts
could be used for documentation purposes or as possibility to explain complicated issues.
However, sampling effects that could lead to information loss should be marked more no-
ticeable. Currently, these effects and pessimist delays that are determined by SymTA/S
should be checked manually.
Scenario 3 is a theoretic consideration. Section 3.6 turns out that the precision of a tim-
ing budget highly depends on the given basis. If no information is available, determining
a suitable timing budget is assumed to be very difficult. Precise execution time cross-
estimations are possible only in a few cases. Sensitivity analysis and design space ex-
ploration could help to find a suitable system configuration within an iterative process.
The precision of the SymTA/S model is assumed to increase with progressing project de-
velopment. However, the use of both functionalities assumably becomes important when
dealing with complex (synchronized) systems, e.g. systems using FlexRay.
The detailed listing of all bugs within SymTA/S is renounced because SymTA/S is a per-
manently improved tool and the bugs are not serious. It provides further functions con-
cerning communication, e.g. traffic shaping. These functions are not needed in order to
investigate the tool for the current purposes of ZF. As it turns out that the useful assign-
ment of a timing tool like SymTA/S requires a lot of extra work, the examination of these
functions is left for further work respectively when it is needed and can be understood on
a concrete project.

86



www.manaraa.com

4 Real-Time Analysis with chronSim

SymTA/S is a timing, respectively scheduling, analysis tool at an abstract level. It is in-
tended to be used for system verification. Therefor, the input parameters like WCETs have
to be provided. Currently, this is late in development process of ZF and the analysis results
potentially are too pessimistic.
Therefor, an alternative tool is introduced in the following. The tool chronSim is devel-
oped by Inchron [29] and it is intended to simulate and visualize the timing behavior of a
system. It is not intended to determine a potentially (pessimistic) worst-case situation, i.e.
to verify the timing behaviour of a system. For this purpose, the tool chronVal is under
development by Inchron. chronSim is able to simulate and visualize the timing behavior
of single ECUs and distributed systems, comparable with SymTA/S use scenarios 1 and 2.
In order to simulate the timing behavior of a system with chronSim, the system has to
be modeled. In an early development phase, this can be done by files written in ANSI-
C. These files contain the skeletal structure of the software, including branches, loops,
function calls and synchronization elements like semaphores but they do not have to con-
tain the original code. Thereby, the API of the target or a generic operating system can
be used. The corresponding execution times of the software are specified by key words
within these ANSI-C-files, like illustrated by figure 4.1. For a first simulation, execution

Figure 4.1: Example of a chronSim task model with specified execution times and operat-
ing system system calls (from chronSim presentation material)

time estimations could be used that are determined like described in sections 2.6.5 and
3.6. So, chronSim also can be used for a budgeting approach like SymTA/S too. It is
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also possibly to specify a certain execution time probability distribution like the normal
probability curve (see figure 4.1). However, using such a probability distribution makes it
difficult to re-produce the simulation results.
In a later development phase, the original C-code can be used. Its execution on the target
hardware running the target operating system can be simulated. Therefor, the C-code is
cross-compiled considering specific compiler settings and the target hardware. So, the ex-
ecution times of the code are determined by chronSim. A combination of original C-code
and specified execution times is possible too. Inchron provides libraries for the compiler,
the (real-time) operating system, the bus system and the processor, e.g. libraries for OSEK
and FlexRay. It is possible to import the task model, i.e. scheduling strategy and task pri-
orities, through OIL-files.
In both cases, the simulator executes each line of C- respectively assembler-code. It con-
siders internal and external interdependencies and inputs. In order to get meaningful sim-
ulation results, appropriate stimuli, e.g. stress tests and suitable ISR activation scenarios,
have to be provided. So, chronSim is not intended to determine the worst-case situation
because the worst-case input is unknown in general due to the black-box character of the
software. Maybe, it might make the timing behavior of a system more transparent because
the simulation can be performed on single software parts and not only on the final software
level after integration. If specifying WCETs, e.g. which are determined statically, the sim-
ulation by chronSim probably provides results that are comparable with that of SymTA/S.
SymTA/S combines WCETs and calculates (eventually pessimistic) WCRTs. chronSim
would also combine WCETs but does not guarantee to catch the worst-case combination
which leads to the WCRT during simulation respectively it is unknown if this combination
is caught.
All in all, chronSim moves the timing test of a system from currently integration phase to
an earlier development phase. Therefor, a kind of manual integration of the software
is necessary in order to create the system model within chronSim. It has to be investi-
gated how much effort is necessary to do this. However, chronSim might help a software
developer specifying timing information of his code and exchanging information about
the timing behavior of the code in an abstract way. The timing behavior of the system
might be understood better on this (abstract) code and possible bottlenecks might be de-
tected. The effort to do this for the whole software has to be investigated further but is
assumed to be very difficult due to the black-box character of the software. Some software
parts, e.g. supplied software in tasks with a low cycle time, have a black-box character.
Hence, an abstract and information hiding model to exchange chronSim-model informa-
tion is desirable. Otherwise, if timing information about the supplied code is needed in
an early development phase, it had to be requested from the supplier. In comparison
with SymTA/S, chronSim takes the hardware more into account and allows simulating
the code while considering the target hardware. Therefor, Inchron provides libraries for
several processors which consider caches and pipeline. These processor libraries base
on benchmarks of reference code. So, it has to be investigated if the accuracy of the
processor model can be warranted for worst-case examinations. Further, some informa-
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tion about the hardware possibly has to be requested by the hardware supplier like it is
the case in section 2.6.4. Unfortunately, chronSim currently does not handle C++. It has
to be investigated if the chronSim-model could be integrated in the common version
management of the code.
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The examination of SymTA/S turns out that a usage of all tool’s functionalities require
further investigations. Most important seems to be a possibility to efficiently get safe and
tight WCETs. The following points name several proposals to reach that:

• Examination of a programming style that provides constant execution times

• Examination of a static WCET analysis tool like aiT

• Adaption of the hardware-trace processing scripts

• Finishing the Tessy approach

• Examination of chronSim

• Development of a method to identify several WCET cases/combinations on a con-
crete project in order to determine the necessary effort to perform very precise tim-
ing analyses

Like described in section 3.3.7, a detailed investigation of the design space exploration
internals would be necessary if critical system configuration decisions should be supported
by the tool.
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Chapter 2 turns out that complex hardware and software makes safe and precise WCET
analysis difficult. Most available static WCET analysis tools support only a restricted set
of microcontrollers. The tool aiT quickly provides first results. However, numerous anno-
tations concerning the code and/or the hardware are necessary in order to get tight results.
Under the current circumstances, black-box testing is not sufficient. It is supposed that the
current measurement methods provide imprecise (worst-case) execution times. The Tessy
approach, which provides a controlled dynamic WCET analysis, could not be finished due
to missing information about the ECU, e.g. startup-code. However, WCET analysis that
bases on the current measurement methods might be necessary for code that is supplied to
ZF as black-box.
Chapter 3 describes the internals of SymTA/S and investigates which effort it provides
in several use scenarios. Scenario 1 (section 3.4) examines the analysis of an existing
system. If SymTA/S detects potential timing problems, an analysis refinement would be
necessary in order to verify or falsify that the problems can really occur. However, this
is not manageable due to the black-box character of the software. One possibility to ease
that problem is to produce code with constant execution times. At this point it is very
important to note that SymTA/S only provides worst-case examinations that base on the
given WCETs. It does not provide a probability of this worst-case situation. For a proba-
bility distribution of potentially problematic scheduling situations, all execution times and
their possible combinations had to be known. This would imply knowledge of the worst-
case situation. However, neither all possible execution times nor the worst-case situation
are known due to the software’s and hardware’s complexity. Probability distributions of
execution times that base on a representative driving situation are not sufficient because it
is the indention to detect unknown special cases that do not occur during normal testing
but possibly can occur.
Scenario 2 clarifies that SymTA/S could be used to visualize complex end-to-end WCRTs.
However, several effects are not displayed by SymTA/S at first sight. So, it has to be
checked manually if some information could be lost, e.g. due to sampling effects. Section
3.5 describes an example system which is partly situated in implementation phase of the
V-model. Because both ECUs are not synchronized, WCET examinations of not yet im-
plemented code are sufficient to represent an approximate system behavior. At this point,
not such precise and difficult to determine input parameters are necessary like in scenario
1. In this case, SymTA/S is supposed to have its greatest benefit. The report files and
Gantt-charts that can be generated are suitable for documentation purposes.
Scenario 3 (section 3.6) suffers from very imprecise raw data. Several assumptions have
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to be made. Time budgeting could be supported by the sensitivity analysis. The opti-
mization functionality is assumed to make sense when at least a few precise parameters
are known. The black-box character of the software makes it difficult to specify realis-
tic timing-budgets. Software with constant execution times assumably makes the use of
SymTA/S for this purpose more easily.
Chapter 4 introduces a further timing analysis tool which is intended to simulate the tim-
ing behavior of a given system instead of verifying it. All in all, the use of SymTA/S is
limited to a few situations that do not exhaust the capabilities of the tool under the current
conditions.
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Glossary

ABS . . . . . . . . . . . . . . . Anti-lock Brake System
ANSI . . . . . . . . . . . . . . American National Standards Institute
AOMF . . . . . . . . . . . . . Absolute Object Module Format
ASCII . . . . . . . . . . . . . American Standard Code for Information Interchange
AUTOSAR . . . . . . . . . Automotive Open System Architecture
BCC . . . . . . . . . . . . . . . Basic Conformance Class
BCET . . . . . . . . . . . . . Best-Case Execution Time
CAN . . . . . . . . . . . . . . Controller Area Network
CC . . . . . . . . . . . . . . . . Conformance Class
CFG . . . . . . . . . . . . . . . Control Flow Graph
COFF . . . . . . . . . . . . . . Common Object File Format
CTE . . . . . . . . . . . . . . . Classification Tree Editor
CPU . . . . . . . . . . . . . . . Central Processing Unit
CRL . . . . . . . . . . . . . . . Control-Flow Representation Language
CSA . . . . . . . . . . . . . . . Context Save Area
EABI . . . . . . . . . . . . . . Embedded Application Binary Interface
ECC . . . . . . . . . . . . . . . Extended Conformance Class
ECU . . . . . . . . . . . . . . . Electronic Control Unit
ELF . . . . . . . . . . . . . . . Executable and Linking Format
ETAS . . . . . . . . . . . . . . Entwicklungs-, Test- und Applikationssysteme
FIFO . . . . . . . . . . . . . . First In First Out
GPL . . . . . . . . . . . . . . . GNU General Public License
GUI . . . . . . . . . . . . . . . Graphical User Interface
HTML . . . . . . . . . . . . . Hypertext Markup Language
ILP . . . . . . . . . . . . . . . . Integer Linear Programming
IPET . . . . . . . . . . . . . . Implicit Path Enumeration Technique
ISO . . . . . . . . . . . . . . . . International Organization for Standardization
ISR . . . . . . . . . . . . . . . . Interrupt Service Routine
ITA . . . . . . . . . . . . . . . . Instruction Timing Addition
LIN . . . . . . . . . . . . . . . Local Interconnect Network
LMI . . . . . . . . . . . . . . . Local Memory Bus Interface
LOC . . . . . . . . . . . . . . . Lines Of Code
LRU . . . . . . . . . . . . . . . Last Recently Used
OCDS . . . . . . . . . . . . . On-Chip Debug System
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6 CONCLUSION

OIL . . . . . . . . . . . . . . . OSEK Implementation Language
OTAWA . . . . . . . . . . . . Open Tool for Adaptive WCET Analyses
OSEK . . . . . . . . . . . . . Offene Systeme und deren Schnittstellen für die Elektronik im

Kraftfahrzeug
PCP . . . . . . . . . . . . . . . Priority Ceiling Protocol
PMI . . . . . . . . . . . . . . . Program Memory Interface
RAM . . . . . . . . . . . . . . Random Access Memory
RTA-OSEK . . . . . . . . Real-Time Architect - OSEK
ROM . . . . . . . . . . . . . . Read Only Memory
RMS . . . . . . . . . . . . . . Rate-Monotonic Scheduling
SWEET . . . . . . . . . . . . Swedish Execution Time Tool
TEE . . . . . . . . . . . . . . . Tessy Environment Editor
TIMMO . . . . . . . . . . . Timing Model
TLB . . . . . . . . . . . . . . . Translation Look-Aside Buffer
WCET . . . . . . . . . . . . . Worst-Case Execution Time
XML . . . . . . . . . . . . . . Extensible Markup Language
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